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Abstract. A Turing degree d is said to be low for isomorphism if whenever two computable struc-
tures are d-computably isomorphic, then they are actually computably isomorphic. We construct
a real that is 1-generic and low for isomorphism but not computable from a 2-generic and thus
provide a counterexample to Franklin and Solomon’s conjecture that the properly 1-generic degrees
are neither low for isomorphism nor degrees of categoricity.

1. Introduction

A set A is low for a relativizable class C if using it as an oracle does not reduce the class at
all, that is, if CA = C. This term was first introduced in pure computability theory in 1972 with
respect to Turing functionals [12]. Since then, lowness has been studied in “applied” subfields of
computability theory such as algorithmic randomness [7] and computational learning theory [11],
and it was studied for the first time in the context of computable structure theory by Franklin and
Solomon [8]. Here, Franklin and Solomon defined the notion of lowness for isomorphism. We write
that A is d-computably isomorphic to B (A ∼=d B) if there is an isomorphism from A to B that is
computable from d.

Definition 1.1. [8] A degree d is low for isomorphism if for every pair of computable structures
A and B, if A ∼=d B, then A ∼=0 B.

Informally, d is low for isomorphism if, whenever it can compute an isomorphism between two
computable structures, no oracle is actually necessary to do so because they are already computably
isomorphic.

While Franklin and Solomon did not develop a full characterization of this notion, they obtained
both positive and negative partial characterizations, mainly in terms of category and measure. We
recall that a real A is n-generic if it either meets or strongly avoids every Σ0

n subset of 2<ω; that
is, if for every such S, there is some σ ≺ A such that either σ ∈ S or no extension of σ is in S. A
real is weakly n-generic if it meets every conull Σ0

n subset of 2<ω; that is, if for every such S, some
initial segment of the real is in S [10]. If a real is n-generic (or weakly n-generic), we may say it
is large with respect to category. If a real is random, on the other hand, it is large with respect to
measure. For any reasonably defined randomness notion R, the class of R-random reals is conull;
we refer the interested reader to [5, 9] for definitions.

Franklin and Solomon proved that every Cohen 2-generic degree is low for isomorphism but that
no Martin-Löf random degree is [8]. Therefore, this class of degrees is large with respect to category
but small with respect to measure. Both of these bounds were found to be optimal: Franklin and

Date: August 24, 2016.
The authors would like to thank the Institute for Mathematical Sciences of the National University of Singapore

for supporting their stay there during the Algorithmic Randomness program in June 2014.

1



2 FRANKLIN AND TURETSKY

Solomon showed that there was a weakly 2-generic degree that is not low for isomorphism and a
computably random degree that is. However, the question remained as to whether any degree that
was generic and low for isomorphism must necessarily be at least 2-generic.

We may also consider the degrees of categoricity, which form an interesting contrast with the de-
grees that are low for isomorphism. A Turing degree d is a degree of categoricity if some computable
structure A is c-computably categorical if and only if c ≥T d [6]. We can thus see that the degrees
of categoricity form something of a dual to those that are low for isomorphism. Furthermore, very
little is known about the degrees of categoricity: the only known examples are d.c.e. in and above
0(α) for some α [6, 3, 4], and no hyperimmune-free degree but 0 is a degree of categoricity [1].
However, every degree of categoricity is known to be hyperarithmetic [3]. Therefore, the class of
degrees of categoricity is conull as well.

Franklin and Solomon suggested that an attempt at understanding these notions could be made
by studying the gap between them: the degrees that are neither degrees of categoricity nor low for
isomorphism. They proposed the properly 1-generic degrees as a possible such class [8].

In this paper, we show that this conjecture is false: that there is a properly 1-generic degree d
that is low for isomorphism. In fact, we must prove something stronger: since the degrees that are
low for isomorphism are downwards closed, to prove a novel result, we must show that there is a
1-generic degree that is both not computable from any 2-generic degree and low for isomorphism.

2. The Result

Theorem 2.1. There is a 1-generic real that is low for isomorphism that is not computable from
any 2-generic.

We begin with a general discussion of the requirements we will have to satisfy and the ways in
which we will do this. First, let 〈Aj〉j∈ω be an effective listing of all partial computable structures.

We must ensure that the real G we build is 1-generic, that it is not computed by a 2-generic, and
that it is low for isomorphism. We denote these requirements as follows:

ONEe: G either meets or avoids the Σ0
1 set We.

T WOi: There is a Σ0
2 set Xi such that if ΦY

i = G, then Y neither meets nor avoids Xi.
IM〈i,j1,j2〉: If ΦG

i is an isomorphism between Aj1 and Aj2 , then Aj1 ∼=0 Aj2 .

The first kind of requirement is finitary and the easiest one to satisfy: we can ensure that G is
1-generic through a standard finite injury approach. If we find at some stage that we can extend
our finite approximation to G in such a way that we meet We, we do so, injuring later requirements;
otherwise, we satisfy it automatically.

We will satisfy the second requirement by breaking it up into subrequirements:

T WO〈i,τ〉: If there is a Y � τ with ΦY
i = G, then Y does not meet Xi and there is a string

ρ � τ with ρ ∈ Xi.

By working to meet each subrequirement, we will construct the set Xi. Our action to meet a
subrequirement is also finitary but somewhat complicated to describe.

Suppose that we have a finite approximation g to our real and that we now wish to act to satisfy
T WO〈i,τ〉. We attempt to locate a string ρ extending τ with the property that there is no Y

extending ρ with ΦY
i = G. We reserve the next bit b (at position |g|) for our use. At first we

require that G(b) = 0. If at some stage we see a ρ extending τ with Φρ
i � ga0, this is our desired
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ρ. We ensure that there is no Y extending ρ with ΦY
i = G by requiring that G(b) = 1. Thus, our

action for this subrequirement is finitary.
Our construction will take place on a priority tree, and there will be various T WO〈i,τ〉 strategies

on the tree. We will define Xi to be made up of the ρ which are selected by a T WO〈i,τ〉 strategy
that is not later injured during the construction. As we are performing a 0′′-construction, this will
be a Σ0

2 set.
If there is a Y extending τ with ΦY

i = G, we will argue that the T WO〈i,τ〉-strategy along the
true path will see the desired extension ρ of τ , and this ρ will be in Xi, so Y cannot avoid Xi.

Alternately, if Y meets Xi, then we can find an initial segment ρ at which this happens and
consider the Φi,τ -strategy that put ρ into Xi. If the strategy is not on the true path, we will show
that this Y cannot compute our real G; if the strategy is on the true path, we will use the bit b as
a witness to show that, once again, ΦY

i cannot compute G.
The third kind of requirement allows us to ensure that G is actually low for isomorphism. This

requirement must be treated in an infinitary way. To do this, we will take our finite approximation
to G and look for longer and longer extensions of it that would produce a partial isomorphism
via Φi. While we are looking for such an extension, we restrain G to pass through the previously
located extension. If we find such an extension, we move to the infinite outcome as we temporarily
drop the restraint. Then we return to the finite outcome and begin searching for a longer extension.

If, for the IM〈i,j1,j2〉-strategy along the true path, we are infinitely often able to find a longer
extension which extends the isomorphism via Φi, then this is a computable sequence, so the resulting
isomorphism is computable. If we eventually stop finding such extensions, then our restraint on G
ensures that G cannot compute an isomorphism via Φi.

Construction. We define our priority tree T recursively:

• 〈〉 ∈ T ;
• If σ ∈ T with |σ| = 3e, then σ is a ONEe-node, and both σa0 and σa1 are in T with
σa1 < σa0;
• If σ ∈ T with |σ| = 3e+ 1, then σ is a T WOe-node, and both σa0 and σa1 are in T with
σa1 < σa0;
• If σ ∈ T with |σ| = 3e + 2, then σ is a IMe-node, and σam ∈ T for m ∈ ω ∪ {∞}, with
σa∞ < · · · < σa1 < σa0.

For every node σ in the priority tree which is visited at any point in the construction, we will
define a string gσ ∈ 2<ω. This is the finite initial segment of G that σ must work beyond—it is the
restraint that σ inherits from its parent. We begin with g〈〉 = 〈〉.

At every stage s we will visit an increasing sequence of nodes on the tree, beginning with 〈〉.
When we visit a node σ, we will act according to its strategy for that stage. If |σ| < s, this action
will include choosing some m such that σam is the next node to visit at stage s. At this or a
previous stage, the action for σ will have defined gσam ∈ 2<ω with gσam � gσ. Once we have
visited a node σ with |σ| = s, the stage will end and we will proceed to stage s+ 1.

Now we give the details of each node’s strategy.

Strategy for ONEe-nodes. Suppose σ is a ONEe-node which is visited at stage s. We can
immediately define gσa0 = gσ. If we have defined gσa1 at a previous stage, then there is no action
to take for σ, and σa1 is the next node to be visited.
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If we have not yet defined gσa1, we look for a ρ � gσ with ρ ∈ We,s. If there is such a ρ, we

define gσa1 = ρ, and σa1 is the next node to be visited. If there is no such ρ, then σa0 is the next
node to be visited.

Strategy for T WOe-nodes. Suppose σ is a T WOe-node which is visited at stage s, where

e = 〈i, τ〉. We can immediately define gσa0 = gaσ 0 and gσa1 = gaσ 1.

We then look for a ρ � τ with |ρ| < s and Φρ
i � gaσ 0. If there is such a ρ, then σa1 is the next

node to be visited. If there is no such ρ, then σa0 is the next node to be visited.

Strategy for IMe-nodes. Suppose σ is an IMe-node which is visited at stage s, where e =

〈i, j1, j2〉. We can immediately define gσa0 = gaσ 0 and gσa∞ = gaσ 1.
We define a length-of-agreement function `(e, s, ρ) to be the greatest n ≤ s such that:

• The atomic diagrams of Aj1 and Aj2 have converged up to n by stage s;
• Aj1�n ⊆ dom Φρ

i ;
• Aj2�n ⊆ range Φρ

i ; and
• Φρ

i is a partial isomorphism from Aj1 to Aj2 .

Let k <∞ be greatest with gσak defined, and let t ≤ s be the stage at which gσak was defined.
We look for a ρ � gσak with |ρ| < s and `(e, s, ρ) > `(e, t, gσak). If there is such a ρ, then we define
gσa(k+1) = ρ, and σa∞ is the next node to be visited. If there is no such ρ, then σak is the next
node to be visited.

The true path. Define the true path TP by setting TP�n to be the lexicographically leftmost node
σ ∈ T with |σ| = n and σ is visited infinitely often during the construction. It is straightforward
to see that this is a path through T . We write ν ≤ TP to indicate that ν is on or to the left of the
true path. Note that {ν | ν ≤ TP} is a Σ0

2 set; indeed,

ν ≤ TP ⇐⇒ (∃s)(∀t > s)[the node of length |ν| visited at stage t is ≥ ν].

For every i, define the set Xi as:

Xi = {ρ | there is a ν ≤ TP which is a T WO〈i,τ〉-node with gν defined, ρ � τ and Φρ
i � g

a
ν 0}.

Note that Xi is a Σ0
2 set.

Define
G =

⋃
σ≺TP

gσ.

Verification.

Lemma 2.2. If ν ≤ TP but ν 6≺ TP (so ν is strictly to the left of the true path), then gν is either
not defined or gν 6≺ G.

Proof. Assume gν is defined. Let σ be the meet of ν and TP. So there are some m0,m1 with
σam1 � ν, σam0 ≺ TP and σam1 < σam0. Since gν is defined, it follows that gσam1

is defined.

Suppose σ is a ONEe-node. Then σam1 < σam0 requires m1 = 1 and m0 = 0. Since gσam1
=

gσa1 is defined, our action for σ ensures that σa1 = σam1 is on the true path, contrary to our
choice of σ. Thus σ cannot be a ONEe-node.

Suppose σ is a T WOe-node. Then σam1 < σam0 requires m1 = 1 and m0 = 0. By our action

for σ, gσam1
= gaσ 1 and gσam0

= gaσ 0. Since G � gσam0
and gν � gσam1

, the lemma follows.
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Finally, suppose σ is an IMe-node. Then σam1 < σam0 requires m1 > m0, in the usual ordering
of ω ∪ {∞}. If m1 6=∞, then by our action for σ, after the stage at which gσam1

becomes defined,

σam0 will never again be visited. This contradicts our assumption that σam0 ≺ TP . So it must

be that m1 = ∞. Again by our action for σ, gσa∞ = gaσ 1. Also, observe that gσa(k+1) � gσak for

all k and gσa0 = gaσ 0. So G � gσam0
� gaσ 0, and gν � gσam1

= gaσ 1. The lemma follows. �

Lemma 2.3. G cannot be computed from a 2-generic.

Proof. To prove this lemma, it is sufficient to show that for any i and Y such that ΦY
i = G, Y

cannot be 2-generic. In fact, we will show that such a Y can neither meet nor avoid Xi.
Suppose that Y avoids Xi. We fix a τ ≺ Y at which this happens, let e = 〈i, τ〉, and let

σ = TP�(3e+ 1). Then by definition of Xi, there is no ρ � τ with Φρ
i � g

a
σ 0. In particular, it must

be that ΦY
i (|gσ|) 6= 0. But if there is no such ρ, then σa0 will always be the next node visited after

σ is visited, meaning σa0 is on the true path. So gσa0 = gaσ 0 ≺ G. Thus ΦY
i (|gσ|) 6= G(|gσ|), and

ΦY
i 6= G.
Now we suppose that Y does meet Xi. We fix an initial segment ρ at which Y meets Xi and

consider the T WO〈i,τ〉-node ν that witnesses ρ ∈ Xi. By definition, ν ≤ TP , gν is defined and

Φρ
i � gaν 0. But if ν is strictly to the left of the true path, then by Lemma 2.2, gν is not an initial

segment of G, so ΦY
i 6= G.

Now suppose ν is on the true path. Then ρ is precisely the sort of string we are searching for in
the strategy for ν. So at any stage s > |ρ| at which ν is visited, νa1 will be the next node visited.

So νa1 ≺ TP , and so gνa1 = gaν 1 ≺ G. But then ΦY
i 6= G. �

Lemma 2.4. Each requirement of the form ONEe is met.

Proof. Fix e, and let σ = TP �(3e). If gσa1 is ever defined, then gσa1 ∈ We and σa1 ≺ TP by
construction, so G meets We at gσa1.

So suppose now that gσa1 is never defined, and that gσ does not avoid We. Then there is a
ρ � gσ with ρ ∈ We, and so at some sufficiently late stage s we will see ρ ∈ We,s while acting for
the strategy for σ. At this stage, we will define gσa1 = ρ, contrary to our assumption. �

Lemma 2.5. Each requirement of the form IMe is met.

Proof. Fix e = 〈i, j1, j2〉 and let σ = TP �(3e + 2), and suppose Aj1 and Aj2 are total structures
and ΦG

i is an isomorphism from Aj1 to Aj2 .

First suppose there were some k < ∞ with σak ≺ TP , and let t be the stage at which gσak is
defined. Since σak is visited infinitely often, by construction gσa(k+1) must never be defined. But

for some sufficiently large n and s, G�n � gσak and `(e, s,G�n) > `(e, t, gσak). So our action for σ
will define gσa(k+1) = G�n, contrary to our previous statement.

So it must be that σa∞ ≺ TP . But in that case the sequence 〈gσak〉k∈ω is a total computable

increasing sequence, and
⋃
k∈ω Φ

g
σak
i is a computable isomorphism between Aj1 and Aj2 . �

These lemmas suffice to prove Theorem 2.1: Lemma 2.4 shows that G must be 1-generic, Lemma
2.5 shows that G must be low for isomorphism, and Lemma 2.3 shows that G must not be com-
putable from a 2-generic and thus that it is not only properly 1-generic but that its lowness for
isomorphism is not due to being in the downwards closure of a 2-generic.
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3. Parting thoughts

Franklin and Solomon’s results indicated that the degrees that are low for isomorphism are
resistant to a straightforward characterization. For instance, they showed that there are degrees
that are low for isomorphism and degrees that are not in each of the following classes: minimal
degrees, hyperimmune degrees, and hyperimmune-free degrees [8]. However, as mentioned in the
introduction of this paper, they also showed that some classes of degrees, including the 2-generic
degrees, contain only degrees that are low for isomorphism and that some other classes, including
the Martin-Löf random degrees, contain only degrees that are not. While it was already known
that there are properly 1-generic degrees that are low for isomorphism since every 2-generic degree
computes a properly 1-generic degree and the degrees that are low for isomorphism are closed
downward, we have constructed a properly 1-generic degree that is nontrivially low for isomorphism.
We have therefore shown that there is no level of Cohen genericity at which lowness for genericity
only holds when it is required to by higher levels and thus that lowness for isomorphism is not a
straightforward notion with respect to genericity, either.

We should note that the situation is more complicated when one considers weak genericity as
well. We have not addressed the question of whether a degree that is low for isomorphism and
properly 1-generic must be computable from a weakly 2-generic. While we see no reasonable way
to adapt our construction and replace “2-genericity” with “weak 2-genericity” in Theorem 2.1, we
cannot rule it out as a possibility.

We may also consider notions similar to lowness for isomorphism. Csima defined a degree d
to be low for categoricity if every computable d-computably categorical structure is computably
categorical [2]. Lowness for isomorphism is immediately seen to imply lowness for categoricity; it
remains an open problem whether the converse holds. Thus our 1-generic G is low for categoricity,
and it demonstrates that attempting to separate the two notions at the level of Cohen 1-generics
would be extremely difficult.

One could also consider the question of separating notions for lowness for isomorphism for classes
of structures. A degree d is low for isomorphism for a class C if for every pair of structures A and
B in C, if A is d-computably isomorphic to B, then A and B are already computably isomorphic.
This notion was defined in [8] and investigated further in [13] for classes such as linear orders and
equivalence structures. The results for these classes often mirror those for the general case or are
somehow trivial, and it would be interesting to know whether this trend continues when 1-genericity
is considered.
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