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Abstract

A set A is a base for Schnorr randomness if it is Turing reducible to a set R which
is Schnorr random relative to A, and the notion of a base for weak 1-genericity
can be defined similarly. We show that A is a base for Schnorr randomness if
and only if A is a base for weak 1-genericity if and only if the halting set K
is not Turing reducible to A. Furthermore, we define a set A to be high for
Schnorr randomness versus Martin-Löf randomness if and only if every set that
is Schnorr random relative to A is also Martin-Löf random unrelativized, and
we show that A is high for Schnorr randomness versus Martin-Löf randomness
if and only if K is Turing reducible to A. Results concerning highness for other
pairs of randomness notions are also presented.

Primary Mathematics Subject Classification: 03D32; Secondary Mathematics Sub-
ject Classification: 68Q30.

1 Introduction

Kučera and Terwijn [15] showed that there is a nonrecursive setA such that the notions
of Martin-Löf randomness relative to A and unrelativized Martin-Löf randomness
coincide. As every set is Turing reducible to a Martin-Löf random set [8, 14], A is
also Turing reducible to a set which is Martin-Löf random relative to A. Later, this
notion was systematically studied [21, 22] and characterized [10].

These studies have been carried out for several other properties as well. In general,
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a set A is called a base for a relativizable property M if there is a set B ≥T A that
has the property M relative to A. For example, it is well known that every set is a
base for Kurtz randomness (see Remark 1.4 below). Furthermore, no nonrecursive set
is a base for 1-genericity, since it is not Turing reducible to any set which is 1-generic
relative to it. In the present work, we investigate the bases for the notions of Schnorr
randomness and weak 1-genericity and show that in both cases, the bases are the
natural class of sets that are not Turing above the halting set. This solves an open
problem of Miller and Nies in the case of Schnorr randomness [20, Question 5.2].

There are several notions of algorithmic randomness [4, 17, 19, 27, 28]. A set A is
Martin-Löf random if there is no uniformly r.e. sequence of Σ0

1 classes such that for
every e, the eth class has measure at most 2−e and contains A [18]. A set is Schnorr
random if “at most 2−e” is replaced by “exactly 2−e” in the previous definition [27].
Alternatively, we can characterize these notions using martingales. A martingale M
is a real-valued function defined on finite binary strings such that M(σ0) + M(σ1) =
2M(σ) ≥ 0 for all σ, and it is recursive (r.e.) if and only if the set {(σ, q) : σ ∈
{0, 1}∗, q ∈ Q,M(σ) > q} is recursive (r.e.). We say that a martingale M succeeds on
A if for every c, there is an n such that M(A(0)A(1) . . . A(n)) > c. The Martin-Löf
random sets have been characterized as those on which no r.e. martingale is successful
[27]. Similarly, a set is recursively random if no recursive martingale succeeds on this
set. The martingale characterization of Schnorr randomness is more involved, and
there are several versions. Among these, the following is the most suitable for this
paper. The martingale characterization of Kurtz randomness is presented here as well.

Property 1.1. A set R is Schnorr random if there is no recursive martingale M and
no recursive bound function f such that there are infinitely many n with

M(R(0)R(1) . . . R(f(n))) > n.

A set R is Kurtz random if there is no recursive martingale M and no recursive bound
function f such that for all n,

M(R(0)R(1) . . . R(f(n))) > n.

These notions can be relativized to an oracle A, so we can obtain the corresponding
characterizations for “Schnorr random relative to A” and “Kurtz random relative to
A” by quantifying over A-recursive functions f and A-recursive martingales M.

Furthermore, a set is called “strongly random” [26] if it is Martin-Löf random
and forms a minimal pair with the halting problem. Although the term “weakly 2-
random” is widely used [3, 6, 22], in this paper, we will use “strongly random” instead.

Genericity notions [11, 24, 25] are complementary to randomness notions. While
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a random set avoids certain kinds of null sets, a generic set will either meet some
extension or strongly avoid all extensions of every extension function of a certain
type. For instance, a set G is 1-generic if and only if for every partial recursive
extension function f : {0, 1}∗ → {0, 1}∗, either there are n and m such that G(n)G(n+
1) . . . G(m) = f(G(0)G(1) . . . G(n − 1)) (“G meets f”) or f(G(0)G(1) . . . G(n − 1))
is undefined for almost all n (“G strongly avoids f”). Weak 1-genericity is a variant
in which this condition is required to hold only for total extension functions. In this
paper, we will use the following characterization instead, which will allow us to treat
f as dependent only on the length of the input and not on the particular choice of
input.

Property 1.2. A set G is weakly 1-generic if and only if for every recursive function
f : N→ {0, 1}∗ there are numbers n and m such that n ≤ m and f(n) = G(n)G(n+
1) . . . G(m).

This notion can, of course, be relativized to an oracle A by quantifying over all A-
recursive functions. A set is said to be (weakly) n-generic if it is (weakly) 1-generic
relative to K(n−1).

The notion of bases of randomness is linked to lowness. For example, a set A is
low for a relativizable propertyM if and only if the sets B that have the propertyM
unrelativized are precisely those that have the property M relative to A. The most
famous result of this type is that a set is low for Martin-Löf randomness if and only
if it is a base for Martin-Löf randomness [4, 21, 22].

In the case of bases of Schnorr randomness, there are some parallels to this result
if we consider notions of bases of randomness with respect to truth-table reducibility
[7]. In the case of Turing reducibility, though, the class of the sets which are low
for Schnorr randomness forms a proper subclass of the class of the bases for Schnorr
randomness. However, we can develop a notion of highness for Schnorr randomness
versus Martin-Löf randomness. This is the dual of lowness for a pair of randomness
notions. The concept of lowness for a pair of randomness notions was introduced
by Kjos-Hanssen, Nies and Stephan [12]. A set A is said to be low for a notion M
versus a notion N if and only if every set which has the property M also has the
property N relative to A. This notion has also been explicitly studied by many others,
including Downey, Nies, Weber and Yu [5], Nies [21], and Greenberg and Miller [9].
We formalize the concept of highness for a pair of randomness notions as follows.

Definition 1.3. A set A is high for a notionM versus a notion N if and only if every
set which has the property M relative to A also has the property N unrelativized.

For example, a set A is high for Schnorr randomness versus Martin-Löf randomness
if and only if every set which is Schnorr random relative to A is also Martin-Löf
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random. Note that every set is high for M versus N if and only if M implies N .
For example, every set is high for recursive randomness versus Schnorr randomness as
every recursively random set is also Schnorr random. If no set is high for M versus
N , then there is a very strong form of nonimplication which cannot be bridged by
relativizing M.

The main result of this paper is that this notion is antithetical to being a base for
Schnorr randomness and characterizes the Turing degrees above the halting problem.
The following properties are shown to be equivalent to A ≥T K.

• A is not a base for Schnorr randomness; that is, there is no R ≥T A such that
R is Schnorr random relative to A (Theorems 2.1 and 2.2).

• A is high for Schnorr randomness versus Martin-Löf randomness; that is, every
set which is Schnorr random relative to A is also Martin-Löf random unrela-
tivized (Theorems 2.1 and 2.2).

• A is not a base for weak 1-genericity; that is, there is no G ≥T A which is weakly
1-generic relative to A (Theorem 3.1).

• A is high for weak 1-genericity versus 1-genericity; that is, every set which is
weakly 1-generic relative to A is also 1-generic unrelativized (Corollary 3.2).

• A is high for 1-genericity versus weak 2-genericity; that is, every set which is
1-generic relative to A is also weakly 2-generic unrelativized (Theorem 3.3).

This suggests that highness is very closely connected to the classical recursion-theoretic
notion of computational strength and to Turing completeness in particular in a way
that lowness is not. The classes of sets that are low for pairs of randomness notions
are, of course, all downward closed in the Turing degrees, but their characterizations
are given in terms of traceability properties or K-triviality [6, 22]. Only the trivial
class of sets that are low for recursive randomness can be described by reference to
a single Turing degree. When we study highness for pairs of randomness notions,
however, the class of sets under consideration can often be defined in this way.

We also consider bases of recursive randomness and the notion of highness for
recursive randomness. We show that no set which is a base for recursive randomness
has PA-complete Turing degree. Furthermore, if A ≤T K and A does not compute
a diagonally nonrecursive function, then A is a base for recursive randomness [10].
The following two partial characterizations of the sets which are high for recursive
randomness versus Martin-Löf randomness are proven similarly.

• If A is PA-complete, then A is high for recursive randomness versus Martin-Löf
randomness.

4



• If A is high for recursive randomness versus Martin-Löf randomness, then there
is a Martin-Löf random set that is Turing reducible to A.

The results for Kurtz randomness are summarized in the following remark, as they
are quite straightforward and mostly known.

Remark 1.4. For every set A there is a A′-recursive sequence a0, a1, a2, . . . of numbers
such that R is Kurtz random whenever it is chosen outside the intervals In = {x :
2an ≤ x < 2an+1} such that betting according to the universal A-r.e. martingale will
not increase one’s capital, regardless of the values of R on the intervals In. Hence,
for all x ∈ In, we can define R(x) = A(n). As there are only finitely many m /∈
{a0, a1, a2, . . .} such that R is constant on the interval 2m ≤ x < 2m+1, we can
compute the positions of the intervals In from R and then compute A(n). As R is
Kurtz random relative to A and Turing above A, A is a base for Kurtz randomness
[13].

Furthermore, the set R constructed here is neither Schnorr random nor weakly
1-generic. In the case of Schnorr randomness, this follows from the fact that R is
constant on all intervals In. In the case of weak 1-genericity, this follows from the fact
that R is either random or constant on the intervals {x : 2m ≤ x < 2m+1} but does
not meet any other extension requirement. It follows that there is no set A such that
A is high for Kurtz randomness versus Schnorr randomness, recursive randomness,
Martin-Löf randomness, weak 1-genericity, 1-genericity or weak 2-genericity.

Tables 1 and 2 contain a summary of this information. All of these results appear in
this paper except the characterization of highness for Martin-Löf randomness versus
strong randomness, which was given by Barmpalias, Miller and Nies [1].

Schnorr Recursive Martin-Löf Strong
randomness randomness randomness randomness

Kurtz randomness ∅ ∅ ∅ ∅
Schnorr randomness K K K
Recursive randomness P ?
Martin-Löf randomness D

Table 1: Highness for pairs of randomness notions

In these two tables, the entry in row M and column N represents the class C of sets
which are high for M versus N ; that is, C = {A : every set R satisfying M relative
to A also satisfies N}. This class of sets is always one of the following:

• the class K of all A ≥T K,
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• the class K′ of all A ≥T K ′,

• the class H of all sets which are high (A′ ≥T K ′),

• the partially known class P , or

• the class D of all A such that there is no K-recursive function f which is diago-
nally nonrecursive relative to A, that is, which satisfies ϕAe (e) 6= f(e) whenever
ϕAe (e) is defined.

Although P is not completely determined, it is known that it contains every PA-
complete set and that every set A ∈ P is Turing above some Martin-Löf random set;
furthermore, not every Martin-Löf random set is in P .

2 Schnorr Randomness

The following theorem is the basis for several of the results in this paper.

Theorem 2.1. For every set A 6≥T K and every set B, there is a set R such that
B ≤T R, R is not recursively random and R is Schnorr random relative to A.

Proof. First, define a recursive injective enumeration 〈am, bm〉 of all pairs such that
am > 0 and either bm = 0 or some element below am is enumerated into K at stage
bm. The enumeration is chosen such that bm ≤ m for all m. Therefore, for each n,
there are at most n + 2 indices m with am = n. The largest of these m satisfies
m ≥ cK(n), where cK(n) = min{s ≥ n : ∀m ≤ n [Ks(m) = K(m)]} is the convergence
modulus of K. Partition the integers into intervals Im of length 3am + 1 such that
min(I0) = 0 and min(Im+1) = max(Im) + 1 for every m. Now observe that there
is a list M0,M1,M2, . . . of A-recursive martingales such that the nth martingale in
this list has the value 1 on all strings of length shorter than n and that whenever
some A-recursive martingale succeeds on some set than some member of the list also
succeeds on that set. Now we let M =

∑
n=0,1,2,...

1
2n+2Mn. Note that M itself is not

Weak Weak
1-genericity 1-genericity 2-genericity 2-genericity

Kurtz randomness ∅ ∅ ∅ ∅
Weak 1-genericity K K K′
1-genericity K K
Weak 2-genericity H

Table 2: Highness for pairs of genericity notions
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A-recursive and that it also has the initial value 1.
Let F (x) = max{m : am = x}. Note that F majorizes cK and that F is K-

recursive. Let f0, f1, f2, . . . be a list of all A-recursive functions. Now let E =
{x0, x1, x2, . . .}, where

xn = min{y : ∀m < n [xm < y ∧ fm(y) < F (y)]}.

Note that every xn can be defined, as otherwise F (y) ≤ f0(y) + f1(y) + . . . + fn(y)
for almost all y. This would contradict the fact that K 6≤T A. Using E, we can now
define the set R inductively on all intervals Im as follows.

• If am /∈ E or if there is k > m with am = ak, then choose R on Im such that R
has the value 1 on at least one of the least 2am elements of Im and M grows on
Im by at most the factor 4am/(4am − 1).

• Otherwise (that is, if am ∈ E and there is no k > m with am = ak), choose
R(min(Im) + u) = 0 for u ∈ {0, 1, . . . , 2am − 1} and choose R(min(Im) + u) =
B(u− 2am) for u ∈ {2am, 2am + 1, . . . , 3am}.

Now we show that R has the desired properties.
First, we show that B ≤T R. To compute B(n), search for the first interval Im

such that am ≥ n + 1 and R(min(Im) + u) = 0 for all u ∈ {0, 1, . . . , 2am − 1}. As
E contains a number larger than n, the search will terminate. It can be seen that
B(n) = R(min(Im) + 2am + n).

Now we show that R is not recursively random by constructing a recursive martin-
gale N that succeeds on R as follows. The initial capital of N is set as 2 and for each
interval Im, N invests 4−am , which is then bet on R being 0 for the first 2am members
of Im. If all bets are true, then N doubles the invested capital 2am times and makes
a profit of 22am · 4−am − 4−am = 1− 4−am . Otherwise, N loses the invested 4−am . On
one hand, all potential losses can be bounded by

∑
m 4−am ≤

∑
n>0(n + 2) · 4−n =

3
4

+ 4
16

+ 5
64

+ 6
256

+ . . . < 2 and therefore the martingale never has the value 0. On
the other hand, there are infinitely many intervals Im such that R is 0 on the least
2am members, so the profit is at least 3/4 on these intervals and the value of N goes
to infinity on R. Thus N witnesses that R is not recursively random.

Finally, we show that R is Schnorr random relative to A. To see this, consider the
following function r̃(n).

r̃(n) = n ·

(∏
m<n

223m+1

)
·

(∏
m>0

(
4m

4m − 1

)m+2
)

Note that this product converges to a real number r̃(n) <∞ if and only if
∑

m>0(m+
2) · ((4m/(4m − 1) − 1) < ∞; the latter sum is equal to

∑
m>0

m+2
4m−1 , which, as the
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following calculation shows, is bounded by 4.∑
m>0

(m+ 2) · 1

4m − 1
≤
∑
m>0

2m+2

4m
≤
∑
m>0

22−m = 4

Furthermore, (
∏

m>0 ( 4m

4m−1)m+2) is a positive real number. Therefore, the function r̃
has a recursive upper bound r such that r(n) ∈ N for all n. Without loss of generality,
r is chosen such that r(0) < r(1) < r(2) < . . . holds.

Assume now that Mk is a total A-recursive martingale and fk is an A-recursive
bound function for r as in Property 1.1 such that, in addition, n < fk(n) < fk(n+ 1)
for all n. For almost all n,

Mk(R(0)R(1) . . . R(fk(n))) ≤ n ·M(R(0)R(1) . . . R(fk(n))).

Now consider n > x0 + x1 + . . . + xk. Then for each u < n, there is at most one
interval Im such that u ∈ E, m ≤ fk(n) and F (am) = u; for u ≥ n there is no
interval Im satisfying these conditions. On the intervals that satisfy these conditions,
the martingale M can increase its capital by at most a factor of 23am+1; on all other
intervals Im below fk(n), M can increase its capital by at most a factor of 4am/(4am−1).
Hence, we can see that

M(R(0)R(1) . . . R(fk(n))) ≤ r(n)

n
.

It can be seen from the two previous inequalities that for almost all n,

Mk(R(0)R(1) . . . R(fk(n))) ≤ r(n)

and hence R is not Schnorr random relative to A by Property 1.1.

The next result is based on this construction. The equivalence of the first two con-
ditions solves an open problem of Miller and Nies for the special case of Schnorr
randomness [20, Question 5.2].

Theorem 2.2. The following conditions are equivalent for every set A.

1. A 6≥T K.

2. A is a base for Schnorr randomness.

3. A is not high for Schnorr randomness versus recursive randomness.

4. A is not high for Schnorr randomness versus Martin-Löf randomness.
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Proof. To see that (3.) and (4.) imply (1.), we simply note that if A ≥T K, then
every set which is Schnorr random relative to A is already recursively random and
Martin-Löf random unrelativized.

Furthermore, if A ≥T K, then A is above a low Martin-Löf random set R. Since
there is no set which is Martin-Löf random relative to R above R [10] and every set
which is Schnorr random relative to A is also Martin-Löf random relative to R, there
is no set which is Schnorr random relative to A above A. Therefore, (2.) implies (1.).

If A 6≥T K, then by Theorem 2.1, there is a set which is above A, Schnorr random
relative to A and not recursively random, so (1.) implies (2.) and (3.). Clearly, it is
not Martin-Löf random either, so (1.) implies (4.) as well.

Remark 2.3. It should be noted that this characterization can be extended to strong
randomness: It holds that A ≥T K if and only if A is high for Schnorr randomness
versus strong randomness. In contrast to this, Barmpalias, Miller and Nies [1] showed
that A is high for Martin-Löf randomness versus strong randomness if and only if
there is no K-recursive function which is diagonally nonrecursive relative to A.

3 Genericity

The weakly 1-generic sets are a generalization of the 1-generic sets. Their behaviour
with respect to Turing degrees can be characterized easily: A Turing degree contains a
weakly 1-generic set if and only if it contains a hyperimmune set [16]. Furthermore, a
set is low for weak 1-genericity if and only if it is hyperimmune free and not DNR [29].
We now show that the bases for weak 1-genericity also admit a nice characterization.

Theorem 3.1. A set A is a base for weak 1-genericity if and only if A 6≥T K.

Proof. As mentioned in Property 1.2, it is sufficient to consider extension functions
that depend only on the length of the string extended. Let f0, f1, f2, . . . be a list of all
total A-recursive functions from N to {0, 1}∗ and let cK be the convergence modulus
of K as in the proof of Theorem 2.1.

We first suppose that A ≥T K. Every set G which is weakly 1-generic relative to
A is also 1-generic unrelativized. There is no 1-generic set above K, so A is not a
base for weak 1-genericity.

Now we suppose that A 6≥T K and define a set G via a sequence a0, a1, a2, . . .
starting with a0 = 0 inductively as follows:

• an+1 = an + 2 + cK(n),

• G(an) = K(n),
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• G(an + 1) = A(n), and

• G(an + 2)G(an + 3) . . . G(an+1 − 1) is fk(an + 2)0cK(n)−|fk(an+2)| for the first k
not used at a previous stage such that |fk(an + 2)| ≤ cK(n).

As there are infinitely many k that map an + 2 to the empty string, a corresponding
extension can always be found and the process will not terminate.

The set G satisfies A ≤T G and K ≤T G, as one can compute A(n) and K(n)
inductively from G given an, then cK(n) from K(0)K(1) . . . K(n) and, finally, an+1

from an and cK(n).
Assume now for a contradiction that some fk is never used in this construction.

Let k be its index. Then, from some index n onwards, no k′ < k is selected due to
the nature of the finite injury construction and hence k does not qualify as it cannot
be such an index. In other words, for all n′ ≥ n, |fk(an′ + 2)| > cK(n′). As we can
approximate cK(n) by cK,s(n) = max{t ≤ s : ∃m ≤ n [t = 0 or m goes into K at stage
t]}, we can compute for n′ ≥ n the values

• cK(n′) as cK,fk(an′ )(n
′) and

• an′+1 as an′ + 2 + cK,fk(an′ )(n
′).

This gives K ≤T A, which produces a contradiction, so every fk will be built into the
construction of G eventually and G will be weakly 1-generic relative to A. Therefore,
there is G ≥T A such that G is weakly 1-generic relative to A and A is a base for
weak 1-genericity.

We can also obtain several easy results concerning highness for pairs of genericity
notions. Recall that a set is (weakly) n-generic if it is (weakly) 1-generic relative to
K(n−1). The following corollary can be seen immediately from the preceding proof.

Corollary 3.2. A set A is high for weak 1-genericity versus 1-genericity if and only
if A ≥T K.

The sets A such that every set which is 1-generic relative to A is also weakly 2-generic
unrelativized have the same characterization.

Theorem 3.3. A set A is high for 1-genericity versus weak 2-genericity if and only
if A ≥T K.

Proof. One direction is easy: If A ≥T K, then every set which is 1-generic relative
to A is 2-generic by definition. For the other direction, we assume that A 6≥T K. For
a given set G, define nextG(n) = min{m− n : m ≥ n ∧m ∈ G}. This represents the
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distance to the next element of G after n. The basic idea of the proof is to show that
there is a 1-generic set G ≤T A′ such that nextG(n) ≤ cK(n) for all n. This set will
not be weakly 2-generic because it will not meet the K-recursive extension function
f(n) = 0cK(n)+11. The A′-recursive algorithm to produce G is the following. At stage
0, let e = 0, n = 0 and G(0) = 1. At each subsequent stage, proceed as follows.

1. If there is no extension of G(0)G(1) . . . G(n) in WA
e , redefine e = e+ 1.

2. If there is σ ∈ {0, 1}∗ such that G(0)G(1) . . . G(n)σ ∈ WA
e and |σ| ≤ cK(n),

then take the length-lexicographic first such σ, let G(n+m+ 1) = σ(m) for all
m < |σ| and redefine n = n+ |σ| and e = e+ 1.

3. Let n = n+ 1 and G(n) = 1.

Note that there are infinitely many e with WA
e = {0, 1}∗, so the algorithm never loops

in the first step for infinitely many consecutive stages.
Note that the current value ẽ of the variable e is only abandoned if the correspond-

ing value ñ of n is such that either G(0)G(1) . . . G(ñ) has no extension in WA
ẽ or after

the first ñ bits, G takes the values of a selected string σ̃ such that G(0)G(1) . . . G(ñ)σ̃
is in WA

ẽ . Furthermore, there is no single ẽ such that the variable e equals ẽ from some
point on, as that would mean that, for the corresponding value ñ, the extension of
G(0)G(1) . . . G(ñ)1m in WA

ẽ found first (relative to A) always has a length greater than
cK(ñ + m). This would imply that K ≤T A, contradicting our assumption about A.
Therefore, every possible value ẽ of e is eventually taken and eventually abandoned,
and G is 1-generic relative to A. It can be seen from the construction that every σ̃
added after ñ has length at most cK(ñ) and is followed by a 1, so nextG(ñ) ≤ cK(ñ)
for all ñ. This completes the proof.

On one hand, if G is 1-generic relative to K, then G is already 2-generic. On the
other hand, if A 6≥T K, then the preceding result shows that there is a set G which
is 1-generic relative to A but not weakly 2-generic. Obviously, G is not 2-generic in
this case. This gives us the following corollary.

Corollary 3.4. A set A is high for 1-genericity versus 2-genericity if and only if
A ≥T K.

Note that G is weakly 2-generic relative to A if and only if it is weakly 1-generic
relative to A′. Furthermore, G is 2-generic if and only if G is 1-generic relative to
K. This means that we can relativize Corollary 3.2 to see that whenever A′ 6≥T K ′,
there is a set G which is weakly 1-generic relative to A′ but not 1-generic relative
to K; it follows that G is weakly 2-generic relative to A but not 2-generic. On the
other hand, if A′ ≥T K ′, then every set which is weakly 2-generic relative to A is also
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weakly 1-generic relative to A′, weakly 1-generic relative to K ′, weakly 3-generic and
2-generic. This gives us the following corollary.

Corollary 3.5. A set A is high for weak 2-genericity versus 2-genericity if and only
if A is high; that is, if and only if A′ ≥T K ′.

Now consider a set A that is high for weak 1-genericity versus 2-genericity. As every
2-generic set is 1-generic, Corollary 3.2 lets us see that A ≥T K. Hence A ≡T B′

for some B by the Jump Inversion Theorem and the sets which are weakly 1-generic
relative to A are precisely those which are weakly 2-generic relative to B. It follows
from Corollary 3.5 that B′ ≥T K ′, so A ≥T K ′.

Conversely, consider any A ≥T K ′. Every set which is weakly 1-generic relative
to A is also weakly 3-generic unrelativized, so A is high for weak 1-genericity versus
2-genericity. This is summarized in the following corollary.

Corollary 3.6. A set A is high for weak 1-genericity versus 2-genericity if and only
if A ≥T K ′.

4 Recursive Randomness

Theorem 2.2 states that a set A is high for Schnorr randomness versus recursive
randomness if and only if A ≥T K. Furthermore, if A is PA-complete, we can get the
following result.

Proposition 4.1. If A is PA-complete, then A is high for recursive randomness
versus Martin-Löf randomness.

Proof. Let M be an r.e. martingale which succeeds on every nonrandom set and
which satisfies ∑

σ∈{0,1}n
M(σ) = r · 2n

for some real r < 1
2

and for all n. Now there is a martingale N satisfying the following
conditions:

• M(σ) < N(σ) ≤ 2|σ| for all σ,

•
∑

σ∈{0,1}n N(σ) = 2n for all n, and

• N(σ) ∈ {0, 2−|σ|−2, 2 · 2−|σ|−2, 3 · 2−|σ|−2, . . . , 2|σ|} for all σ.
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In order to see that such an N exists, we define a sequence of martingales M0,M1,M2, . . .
such that M0(σ) = 1

2
− r for all σ and, for n > 0, Mn(σ) equals 2−n−1 when |σ| < n

and bets such that for σ ∈ {0, 1}n, the sum M(σ) +
∑

m≤n Mm(σ) is a multiple of

2−n−2. To guarantee this, Mn only bets on the nth bit in a way that ensures that the
bets of M +

∑
m<n Mm on this bit get rounded to a multiple of 2−n−2. After that, Mn

abstains from betting. Then we define M +
∑

n Mn. As a result, for σ ∈ {0, 1}n,

N(σ) = M(σ) +
∑
m≤n

Mn(σ) +
∑
m>n

2−m−1

and, as both sums M(σ) +
∑

m≤n Mn(σ) and
∑

m>n 2−m−1 are multiples of 2−n−2, so
is N.

The resulting martingale N takes only one of finitely many possible values on every
input σ, namely one of the multiples of 2−|σ|−2 which is at least 0 and at most 2|σ|.
Furthermore, N majorizes M and thus succeeds on the same sets.

The class of all N with the three properties above forms a Π0
1 class, as M(σ) can be

approximated from below and we find out eventually if q < M(σ) for some rational q.
Note that the values of M are not rationals, as otherwise there would be nonrandom
sets on which M does not succeed. So, as A is PA-complete, N can be chosen to be
an A-recursive martingale taking one of a given finite collection of rational values on
each input.

Now we can see that if R is recursively random relative to A, then N is not
successful on R, so M does not succeed on R either and R is Martin-Löf random.

Now we ask what can be said about the other direction. Indeed, the above result is not
known to be a characterization and the Turing degrees of many Martin-Löf random
sets are not PA-complete. Therefore, the next result is not a full characterization.

Theorem 4.2. If A is high for recursive randomness versus Martin-Löf randomness,
then there is a Martin-Löf random set R ≤T A.

Proof. Let A be a set that does not bound any Martin-Löf random set. We will show
that A is not high for recursive randomness versus Martin-Löf randomness. This will
be done by constructing a function F ≤T A′ such that no Martin-Löf random set is
Turing reducible to A ⊕ F and A ⊕ F has high Turing degree relative to A (that is,
A′′ ≤T (A⊕ F )′). Then there will be a set Q ≤T A⊕ F which is recursively random
relative to A [23]. As Q will not be Martin-Löf random, it follows automatically that
A is not high for recursive randomness versus Martin-Löf randomness.

In order to code highness in F , we consider an A′-recursive injective enumeration
e0, e1, e2, . . . of all indices of strictly partial A-recursive functions such that for all k,
there is an x ≤ k with ϕAek(x) undefined. Furthermore, M denotes the universal r.e.
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martingale and, for computations relative to a partial function ψ as an oracle, ϕψe (x)
is undefined whenever the computation asks for some value of ψ outside the domain
of ψ.

The function F : N→ N is defined by stepwise extensions, starting with σ0 = 000
and by building σn+1 = σnenτn,0τn,1 . . . τn,n where each string τn,m is chosen from
{en, en + 1, en + 2, . . .}∗ such that η = σnenτn,0τn,1 . . . τn,m satisfies one of the following
two conditions for all m ≤ n.

• M(ρ) > n for some ρ � ϕA⊕ηm,|η|.

• There is x < |η| with ¬(ϕA⊕ηGm (x)↓∈ {0, 1}) for all G ∈ {en, en+1, en+2, . . .}∞.

To verify the construction, we first show that such an extension can always be found.
Let n and m be given, and let ϑ = σnenτn,0τn,1 . . . τn,m−1. Given A, one can iteratively
search the strings γ0, γ1, γ2, . . . ∈ {en, en + 1, en + 2, . . .}∗ such that

E(k) = ϕA⊕ϑγ0γ1γ2...γkm (k)↓∈ {0, 1}

for each k where γk is found. If there is no such γk, we append the empty string.
If this can be done for all k, then E ≤T A and E is not Martin-Löf random.

Therefore, there is a k such that M(E(0)E(1)E(2) . . . E(k)) > n, and we can choose
τn,m = γ0γ1γ2 . . . γk and satisfy the first condition in the definition of τn,m.

On the other hand, if this construction goes through up to some k but not beyond,
it is impossible to define E(k + 1) with a value in {0, 1}. In this case, we choose
τn,m = γ0γ1γ2 . . . γk for this k and satisfy the second condition in the definition of
τn,m.

Second, we show that the resulting F is such that A⊕F has a Turing degree which
is high relative to A. Given m, one can, relative to F ′, find the largest k such that
F (m) ≤ k. It follows from the construction that whenever there is an n such that
en = m, then n ≤ |σn| ≤ k. Hence one can check whether there is an n ≤ k such that
en = m relative to A′ (since for all k, there is an x ≤ k such that ϕAek(x) is undefined,
we have a bound on our search). Then the overall algorithm is recursive in A′ ⊕ F ′
and thus A′′ ≤T (A⊕F )′. In other words, A⊕F has high Turing degree relative to A.

Third, we show that there is no Martin-Löf random set recursive in A⊕F . To see
this, consider any m such that ϕA⊕Fm is total and {0, 1}-valued. Furthermore, consider
the infinitely many n ≥ m satisfying ∀k > n [en < ek]. These n must exist, as
e0, e1, e2, . . . is an injective enumeration of an infinite set. The extension τn,m cannot
be selected as in the second item above, as then ϕA⊕Fm would either be partial or not
{0, 1}-valued. Therefore, the extension τn,m is chosen according to the first condition
and there is some ρ � ϕA⊕ηm such that M(ρ) > n for η = σnenτn,0τn,1 . . . τn,m. As ρ
is a prefix of ϕA⊕Fm , it follows that M succeeds on ϕA⊕Fm and ϕA⊕Fm is not Martin-Löf
random. This completes the proof.
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The next result shows that the above result is not optimal.

Theorem 4.3. There is a Martin-Löf random set A which is not high for recursive
randomness versus Martin-Löf randomness.

Proof. Cholak, Greenberg and Miller [2] constructed an r.e. set B <T K and a
function f ≤T B such that for a subclass of {0, 1}∞ of measure 1, every function
recursive relative to a member of this class is dominated by f . The set B is then said
to be uniformly almost everywhere dominating.

A recursive martingale can be given by a function ϕe which computes a rational
number q between 0 and 2 on every input σ that says how to bet on the next bit. In
other words, the capital at σ1 is q times the old capital and the capital at σ0 is (2−q)
times the old capital. It is known that the notion of recursive randomness (relative
to some oracle) is the same whether real-valued or rational-valued martingales are
used [27], so we can describe the martingales using the functions ϕe. In the case of
an oracle E, we consider the function ϕEe instead.

Now we produce an B-recursive martingale M (the superscript B is omitted here
and from now on in order to keep notation simple) which follows the following strategy:
For each oracle E and each index e, ME

e computes the capital ME
e (σ) using the base

case ME
e (σ) = 1 when |σ| ≤ e. If |σ| ≥ e and a ∈ {0, 1}, then we define ME

e inductively
using the following formula:

ME
e (σa) =


q ·ME

e (σ) if a = 1 and q = ϕEe (σ) is in Q, 0 ≤ q ≤ 2
and q is computed with time and use f(|σ|);

(2− q) ·ME
e (σ) if a = 0 and q = ϕEe (σ) is in Q, 0 ≤ q ≤ 2

and q is computed with time and use f(|σ|);
M(σ) otherwise.

The martingale M is defined as

M(σ) =
∑

e=0,1,2,...

2−e−1
∑

τ,|τ |=f(|σ|)

Mτ
e(σ)

and M is B-recursive since ME
e (σ) can be computed from the first f(|σ|) bits of E for

each σ and E and, furthermore, ME
e (σ) can only differ from 1 when e ≤ |σ|.

We can now choose a B-recursive set R on which M is not successful; M does not
make any profit on this set and M(B(0)B(1) . . . B(n)) ≤ 1 for all n. The set R is not
Martin-Löf random as B is r.e. and Turing incomplete [14].

Now we show that R is recursively random relative to every member A of a class
A of measure 1. Assume for a contradiction that this is not the case. Then there must
be a fixed martingale N such that NA is A-recursive and NA succeeds on R for a set of
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oracles A which does not have measure 0. Using arguments given by Mihailović [19]
as well as Franklin and Stephan [7], we can assume that N has the savings property
and that NA(στ) ≥ NA(σ)− 2 for all σ, τ ∈ {0, 1}∗. The class

A = {A : NA is total and ∀c∃n [NA(R(0)R(1) . . . R(n)) > c]}

is measurable and hence has positive measure. Therefore, if f dominates all A-
recursive functions, then there is a constant rA such that NA(σ) ≤ rA · MA

e (σ) for
all σ, as MA

e is computed using the function ϕAe (σ) for almost all σ and f ≤T A
bounds the use for MA

e . Since we can require that rA ∈ N, there are only countably
many choices for each A and so there must be one fixed constant r and some ε > 0
such that the class

B = {A ∈ A : ∀σ ∈ {0, 1}∗ [NA(σ) ≤ r ·MA
e (σ)]}

has measure ε. Due to the savings property of N, there is a function g such that the
measure of each class

Cn = {A ∈ B : NA(R(0)R(1) . . . R(g(n))) > n+ 1}

is at least ε · n
n+1

, since g(n) is simply the first m such that for sufficiently many mem-
bers of B, M has already reached a value above n+3 after processingR(0)R(1) . . . R(m)
and, is therefore still above n+ 1 due to the savings property. It follows for all n that

M(R(0)R(1) . . . R(g(n))) ≥ ε · n
n+1
· 2−e−1 · 1

r
· (n+ 1) = ε · 2−e−1 · 1

r
· n,

which contradicts the fact that M does not succeed on R. Hence R is recursively
random relative to all members of a class of measure one, and this class must have
a member that is Martin-Löf random. In other words, R witnesses that there is a
Martin-Löf random set A which is not high for recursive randomness versus Martin-Löf
randomness.

We note that this proof actually shows not just that there is a Martin-Löf random
set that is not high for recursive randomness versus Martin-Löf randomness, but that
this highness class is actually null.
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