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Abstract. We show that van Lambalgen’s Theorem fails with respect to recursive randomness
and Schnorr randomness for some real in every high degree and provide a full characterization of
the Turing degrees for which van Lambalgen’s Theorem can fail with respect to Kurtz randomness.
However, we also show that there is a recursively random real that is not Martin-Löf random for
which van Lambalgen’s Theorem holds with respect to recursive randomness.

1. Introduction

Martin-Löf randomness is the most frequently studied randomness notion. It can be easily
defined in terms of unpredictability, measure theory, or initial-segment complexity [18], and in each
of these frameworks, there is a universal test, i.e., a single martingale, test, or oracle machine that
can be used to determine whether a real is Martin-Löf random [10, 4, 14].

However, there are other well-known notions of randomness, such as recursive randomness,
Schnorr randomness, and Kurtz randomness. As we compare and contrast these notions with
Martin-Löf randomness and with each other, it is instructive to investigate the extent to which
results that are true of one notion are true of the others. We present here some comparative results
concerning van Lambalgen’s Theorem, a classic theorem in the study of Martin-Löf randomness.

1.1. Background. Our notation is standard and generally follows [16, 17] and [19]. For back-
ground on effective randomness, please refer to [4] or [14].

In this paper, we will primarily use the unpredictability approach to randomness. In the most
general sense, a real, or an element of the Cantor space {0, 1}ω, is considered to be random if no
algorithm of the appropriate computational strength can predict its (n + 1)st bit given its first n
bits. We formalize this notion using martingales.

Definition 1.1. A martingale is a function m : {0, 1}<ω → R≥0 such that for all σ ∈ {0, 1}<ω,

m(σ) =
m(σ0) +m(σ1)

2
.

We say that a martingale m is r.e. if the values m(σ) are uniformly left-r.e. reals and recursive
if the values m(σ) are uniformly recursive reals.

Definition 1.2. A martingale m succeeds on a real A if lim supnm(A�n) =∞.

In other words, a martingale succeeds on a real if there is no bound on the amount of capital
the martingale attains by “betting” on the real.
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Martin-Löf, recursive, and Schnorr randomness can all be defined in terms of martingales as
below. Recall that an order function is simply a recursive function that is nondecreasing and
unbounded.

Theorem 1.3. [18] Let A be a real.

(1) A is Martin-Löf random if no r.e. martingale succeeds on it.
(2) A is recursively random if no recursive martingale succeeds on it.
(3) A is Schnorr random if there is no recursive martingale m such that for some order function

h, m(A�n) ≥ h(n) for infinitely many n.

It is easy to see that every Martin-Löf random real is recursively random and that every recur-
sively random real is Schnorr random. However, neither of the reverse implications hold [18, 21].

In addition to the properties mentioned earlier, Martin-Löf randomness also satisfies several of
our intuitions about randomness; e.g., the halves of any random real should not only be random
themselves, but also random with respect to each other. Van Lambalgen proved in [20] that the
join of any two reals that are Martin-Löf random with respect to each other is a Martin-Löf random
real as well.

Theorem 1.4 (van Lambalgen’s Theorem). Let A0 and A1 be reals. Then A0 ⊕A1 is Martin-Löf
random if and only if A0 is Martin-Löf random and A1 is Martin-Löf random with respect to A0.

Since for any two Martin-Löf reals A0 and A1, A0 ⊕ A1 is Martin-Löf random exactly when
A1⊕A0 is Martin-Löf random, we can see that A0 is Martin-Löf random with respect to A1 if and
only if A1 is Martin-Löf random with respect to A0.

We say that a real A = A0 ⊕A1 satisfies van Lambalgen’s Theorem with respect to a particular
randomness notion R precisely when A is R-random and Ai is R-random with respect to A1−i for
each i ≤ 1. If there is a real A that is R-random for which this statement does not hold, we say
that van Lambalgen’s Theorem fails for A with respect to R-randomness.

2. Previous work

As mentioned in [22] and [4], one direction of van Lambalgen’s Theorem holds for both recursive
and Schnorr randomness.

Theorem 2.1. If A0 is recursively (Schnorr) random and A1 is recursively (Schnorr) random
relative to A0, then A0 ⊕A1 is recursively (Schnorr) random.

We note that full proofs of these results are not given in either of these references, though
Downey and Hirschfeldt indicate that they follow from the test definitions of recursive and Schnorr
randomness [4]. We provide a proof of this theorem for the case of Schnorr randomness that is
based on the martingale characterization here. Throughout the proof, we will use the notation
(A⊕σ)�k, where A is a real and σ is a finite binary string. This should be taken to mean the finite
binary string resulting from the join of A�|σ| and σ for k ≤ 2|σ|; we will never use it for any k
larger than this.

Proof. Suppose that A is Schnorr random and that B is Schnorr random relative to A. We will
assume that A⊕B is not Schnorr random and derive a contradiction.

If A ⊕ B is not Schnorr random, it follows from Proposition 2.1 in [6] that there is a recursive
martingale d that succeeds on A ⊕ B with respect to a recursive bound f . Therefore, there are
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infinitely many n such that d((A ⊕ B)�2(f(n) + 1)) > 8n+1. We let S be the set of n where this
holds.

Now we divide our proof into cases. Consider the set of strings of length f(n) + 1. We ask
whether there are infinitely many n ∈ S such that

2n <

∑
|σ|=f(n)+1 d((A⊕ σ)�2(f(n) + 1))

2f(n)+1
,

that is, whether the average value of d applied to A⊕σ for all σ of the appropriate length is greater
than 2n for infinitely many members of S.

If the answer is yes, then we have a contradiction, since this average value is also a recursive
martingale that succeeds on A in the sense of Schnorr, and A is not Schnorr random.

If the answer is no, then

2n ≥
∑
|σ|=f(n)+1 d((A⊕ σ)�2(f(n) + 1))

2f(n)+1

for all but finitely many n ∈ S. We define a new martingale m that is recursive in A based on a
countable collection of martingales 〈mk〉k∈ω that is defined as follows.

We define the initial value of mn to be 1
2n+1 . Now, for each n, we let cn be the number of strings

σ of length f(n) + 1 such that d((A ⊕ σ)�2(f(n) + 1)) ≥ 8n+1. If σ is such a string, we define

mn(σ) = 2f(n)−n

cn
. If σ is a string of length f(n) + 1 for which that inequality does not hold, we let

mn(σ) = 0. For all longer strings, we define mn to be a nonbetting, constant martingale. Now we
define m(σ) =

∑
kmk(σ) for all strings σ.

If n ∈ S and n is not one of the finitely many exceptions, then

cn · 8n+1 ≤ 2f(n)+12n,

so cn ≤ 2f(n)−2n−2. Therefore, for almost all n ∈ S,

mn(B�(f(n) + 1)) ≥ 2f(n)−n

cn
≥ 2n,

and
m(B�(f(n) + 1)) =

∑
k

mk(B�(f(n) + 1)) ≥ 2n.

We have now produced a martingale recursive in A that succeeds on B in the sense of Schnorr, so
again we have a contradiction. �

However, the other direction of van Lambalgen’s Theorem does not hold for recursive randomness
or Schnorr randomness. In [12], Merkle et al. showed that there is a recursively random real A0⊕A1

such that Ai is not Schnorr random relative to A1−i for some i ≤ 1. In addition, the following
result and proof appear in [14].

Theorem 2.2 (Kjos-Hanssen). There is a Schnorr random real that does not satisfy van Lambal-
gen’s Theorem.

Proof. There is a high minimal degree by the Cooper Jump Inversion Theorem [2]. There must be
a Schnorr random real A0 ⊕ A1 in this high degree [15], and the only possible Turing degrees for
A0 and A1 are 0 and that of A0 ⊕A1 itself. Since A0 and A1 are Schnorr random, they cannot be
recursive, so A0 ≡T A1 ≡T A0⊕A1. Clearly, A0 cannot be Schnorr random relative to A1 (and vice
versa), so van Lambalgen’s Theorem does not hold for this particular Schnorr random real. �
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We note that this proof can also be used to show that there is a recursively random real that does
not satisfy van Lambalgen’s Theorem, since every high degree also contains a recursively random
real [15]. More recently, Yu has shown that van Lambalgen’s Theorem fails with respect to Schnorr
randomness and recursive randomness for a particular class of reals [22].

Theorem 2.3 (Theorem 0.9, [22]). Let B <T 0′ be an r.e. set. If A = A0⊕A1 ≤T B is recursively
(Schnorr) random but not Martin-Löf random, then Ai is not A1−i-recursively (Schnorr) random
for i ≤ 1.

Kjos-Hanssen’s and Yu’s results only apply to very selective classes of reals: those in high minimal
degrees and those bounded away from 0′ by an r.e. set. While all of the Martin-Löf reals in these
classes are high, since every nonhigh Schnorr random real is Martin-Löf random [15], they are
not very strong computationally. Either they are minimal, or they are computable in the halting
problem. This leads to a very natural question: is there a high Turing degree d such that van
Lambalgen’s Theorem holds with respect to recursive randomness or Schnorr randomness for all
random reals of the appropriate type in d?

First, we consider reals A ⊕ B such that A ⊕ B is recursively (Schnorr) random and A and B
are each recursively (Schnorr) random relative to each other. In Section 3, we show that there is at
least one recursively random real A⊕B in every high degree for which van Lambalgen’s Theorem
fails with respect to recursive randomness and Schnorr randomness; that is, A is not recursively
(Schnorr) random relative to B or vice versa. However, we go on to show in Section 4 that this
failure is not universal in the high degrees; i.e., we show that van Lambalgen’s Theorem does hold
with respect to recursive randomness for some recursively random reals that are not Martin-Löf
random. Finally, in Section 5, we will consider a recursively (Schnorr) random real A and attempt
to describe the class of reals B that are recursively (Schnorr) random relative to A such that A is
also recursively (Schnorr) random relative to B. This will help us characterize those reals B for
which A⊕B is a recursively (Schnorr) random real that satisfies van Lambalgen’s Theorem.

3. When van Lambalgen’s Theorem fails

We will construct a real in an arbitrary high degree on which no recursive martingale succeeds.
This real will be constructed in such a way that it can be recursively decomposed into two parts,
one of which is not recursively random or Schnorr random relative to the other. We will need the
following result, which follows easily from a theorem in [5].

Fact 3.1. If a is a high Turing degree, then there is an A ∈ a such that A wtt-computes a
dominating function, that is, a function g such that for every computable function h, g(n) > h(n)
for all but finitely many n.

Theorem 3.2. Let a be a high Turing degree. Then there is a B ∈ a such that B is recursively
random and van Lambalgen’s Theorem does not hold for B with respect to recursive randomness or
Schnorr randomness.

Proof. We let A be an element of a that wtt-computes a dominating function g. We must now pro-
duce a real B such that B is recursively random, B ≡T A, and B does not satisfy van Lambalgen’s
Theorem.

To satisfy the first of these conditions, we will use g to construct a martingale d that succeeds
whenever any recursive martingale does and then construct the real B so that d cannot succeed on



VAN LAMBALGEN’S THEOREM AND HIGH DEGREES 5

it. This will be enough to ensure that B is computable from A and that B is recursively random.
However, we must also ensure that A is computable from B. To do this, we will construct B
in segments of lengths determined by a strictly increasing recursive function f using a technique
similar to that used in [11] (see Fact 3.3). These segments will increase in length and will code more
and more of A. Finally, the bits of B at indices in the range of f will be computable from those
that are not, so we will have an infinite, recursively identifiable portion of B that is computable
from the rest of B. Observe that we are not decomposing B in the standard way into two reals
C0 and C1 such that the 2nth bit of B is the nth bit of C0 and the (2n − 1)st bit of B is the nth

bit of C1. Instead, we will decompose B into two reals B0 and B1 such that the nth bit of B0 is
the f(n − 1)th bit of B and the nth bit of B1 is the nth bit of B that is not in the range of f .
This will not matter since recursive randomness and Schnorr randomness are closed under recursive
permutations. Therefore, van Lambalgen’s Theorem will fail for B with respect to recursive and
Schnorr randomness. While we could produce such a B0 and B1 such that B decomposes into B0

and B1 in the standard way (or, indeed, so the places in which B1 are coded have arbitrarily low
density), we prefer not to clutter the paper with these technical calculations.

At this point, we will not define f , and the reader should simply bear in mind that f is a recursive
function.

We begin by describing a sequence of martingales 〈dk〉k∈ω that will contain all recursive mar-
tingales. We define each martingale dk in terms of the following four functions: the kth partial
recursive function ϕk, a recursive bijection r : ω → (0, 2) ∩ Q, and the dominating function g and
recursive function f mentioned above.

For each k, we define dk as follows. We let the initial capital of dk be 1; i.e., dk takes the
value 1 on the empty string. Now suppose that we have defined dk for a string σ such that
f(n) ≤ |σ| < f(n + 1). To define dk on σ0 and σ1, we first determine whether ϕk(τ) converges
within g(n) steps for all τ such that f(n) ≤ |τ | < f(n + 1). If the answer is yes and n > k, we
extend dk as follows.

dk(σ0) = r(ϕk(σ))dk(σ)

dk(σ1) = (2− r(ϕk(σ)))dk(σ)

Otherwise, we set dk(σ0) = dk(σ1) = dk(σ). Without loss of generality, we can define the initial
value of each dk to be 1.

Now we can define d as a weighted sum of the dk by setting

d(σ) =
∑
k

1

2k+1
dk(σ)

for all σ ∈ {0, 1}<ω. Note that d is recursive in A.
Now we define f . We begin by defining an auxiliary function u, where u(n) is one plus the upper

bound on the use of the calculation of g(n + 1) from A. Since g ≤wtt A, we may take u to be
recursive.

We will now make use of the following fact from [11].

Fact 3.3. Given a rational δ > 1 and k ∈ ω, we can recursively compute a length l(δ, k) such that
for any martingale m and any σ ∈ {0, 1}<ω, the following inequality holds.

|{τ ∈ {0, 1}l(δ,k) | m(στ) ≤ δm(σ)}| ≥ k
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This fact allows us to find a recursive function w such that for each σ of length f(n) + 1, there

are 2u(n) strings τ of length (f(n) + 1) + w(n) extending σ such that

d(τ) ≤
(

1 +
1

2n

)
d(σ).

Now we can finally define f recursively by letting f(0) = 0 and

f(n+ 1) = f(n) + 1 + w(n).

At this point, we are ready to construct B. Rather than define it bit by bit, we will define B on
intervals: particularly, on intervals of the form (f(n), f(n + 1)]. To do this, we will construct two
sequences: 〈σn〉n∈ω and 〈τn〉n∈ω. For every i < j, we will have σi ⊆ σj , and the limits of the σis
will be our desired real B. The τis will simply be auxiliary strings used to define the σis.

We let σ0 and τ0 both be the empty string. For each n ≥ 1, we suppose that we are given a
string σn in {0, 1}f(n). We first extend it by either 0 or 1 to obtain a τn in {0, 1}f(n)+1 as follows.

τn =

{
σn0 if d(σn0) ≤ d(σn1)
σn1 else

We can now find a subset Sn+1 of {0, 1}f(n+1) such that each ρ ∈ Sn+1 extends τn and d(ρ) ≤(
1 + 1

2n

)
d(τn). We know from Fact 3.3 that, given our choice of f , there will be at least 2u(n)

elements in Sn+1. Therefore, we may code all binary strings of length u(n) as one of the leftmost

2u(n) elements of Sn+1. We now define σn+1 to be the element of Sn+1 that codes the first u(n)
bits of A.

Let B = limσn.

Lemma 3.4. If the martingale d does not succeed on a real X, then no recursive martingale will
succeed on X.

Proof. Suppose that X is a real on which d does not succeed, and assume for a contradiction
that there is a recursive martingale that succeeds on X. We note that if a recursive martingale
that succeeds on X exists, then there is also a recursive martingale m that succeeds on X whose
range consists solely of positive rationals [18]. Therefore, without loss of generality, we can simply
consider m, which is definable as

m(σ0) = r(ϕk(σ))m(σ)

m(σ1) = (2− r(ϕk(σ)))m(σ)

for some k, where r is the bijection from ω to (0, 2) ∩Q defined above. However, when we defined
each martingale dk, we did not simply use the relationship above. Instead, we put constraints on
the definition based on whether ϕk(σ) converged for a certain set of σ within a certain number of
steps determined by our function g. Since g is a dominating function, there are only finitely many
places at which g does not bound the runtime of ϕk. Thus, up to a constant, the value that dk
takes on a string is no larger than that of m on the same string. Since d is simply the weighted
sum of the dk, it is clear that if d does not succeed on the real X, neither will dk or m. This gives
us a contradiction, so no recursive martingale can succeed on X. �

We can see easily that d does not succeed on B since the value of d on B is bounded by
∏
n(1+ 1

2n ).
This product converges, so by Lemma 3.4, no recursive martingale succeeds on B, and B is therefore
recursively random.
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Now we must show that B ≡T A. It is clear from the construction that B ≤T A. To compute
A(n) from B, we begin by finding a k such that n ≤ u(k). Now we consider B �f(k + 1). We
recall that we have coded the first u(k) bits of A into the segment of B of bits with indices between
f(k) + 1 and f(k + 1). Only the first u(k − 1) bits of A and recursive functions were used in this
coding, and this information can be obtained from a shorter initial segment of B (namely, B�f(k)),
so we can see that we can recursively compute A(n) from B for any n.

Finally, we must show that B does not satisfy van Lambalgen’s Theorem with respect to recursive
randomness or Schnorr randomness. As previously mentioned, we will not do this in the customary
way by decomposing B into two reals, one consisting of its bits with even indices and one of its
bits with odd indices. Instead, we will consider a different recursive decomposition of B. We use
the following notation to simplify matters.

Notation 3.5. Let Z be an infinite recursive subset of ω. For any real X, we may write X =
X0 ⊕Z X1, where X0(n) is the bit of X whose index is the nth element of Z and X1(n) is the bit
of X whose index is the nth element of Z.

Let F = ran(f). Since f is a strictly increasing recursive function, F will be infinite and recursive.
Therefore, we can express B as B0 ⊕F B1. We can see that B0 is recursive in B1, since we can
calculate B(f(n)) from B�f(n) for all n. Therefore, B0 is clearly not recursively random relative
to B1, and B does not satisfy van Lambalgen’s Theorem with respect to recursive randomness.
Furthermore, since f is recursive, we can recursively compute a lower bound on the amount a
relativized recursive martingale can win by betting on the range of f , so B does not satisfy van
Lambalgen’s Theorem for Schnorr randomness, either. �

We take a moment here to mention the ways in which van Lambalgen’s Theorem can fail for a
real with respect to either recursive or Schnorr randomness in a very general sense. Suppose that
we have a real C = C0 ⊕ C1 such that C0 is not recursively random relative to C1, so there is a
recursive martingale relative to C1 that succeeds on C0. There are two possible reasons that this
martingale could not be converted to a recursive martingale that succeeds on C: either its use is
too large to read all the necessary bits of C1 before betting on a bit of C0, or it is not always
defined on C0 ⊕D for every real D. However, Miyabe has shown that for a certain formulation of
“truth-table Schnorr randomness,” van Lambalgen’s Theorem holds [13].

We now briefly consider van Lambalgen’s Theorem in the context of Kurtz randomness. Kurtz
randomness was first defined in [9] and is a weaker notion than either Schnorr or recursive ran-
domness. Recall that the hyperimmune Turing degrees are precisely those that compute a function
that is not majorized by any recursive function.

Definition 3.6. A real A is Kurtz random if A ∈ U for every r.e. open set U of measure 1.

We first observe that one direction of van Lambalgen’s Theorem holds with respect to Kurtz
randomness.

Theorem 3.7. If A0 is Kurtz random and A1 is Kurtz random relative to A0, then A0 ⊕ A1 is
Kurtz random.

Proof. We assume that A0 is Kurtz random and let U be an arbitrary r.e. open set of measure 1.
Now, for a rational r < 1, we define the class Ur = {P | µ({Q | P ⊕ Q ∈ U}) > r}. Each Ur
can be enumerated recursively, so each Ur is an r.e. open set. Furthermore, µ(Ur) = 1 for each r
since otherwise the measure of U would be strictly less than 1. Since A0 is Kurtz random, A0 ∈ Ur
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for each r, and therefore the set T = {Q | A0 ⊕ Q ∈ U} has measure 1 and is r.e. relative to A0.
Since A1 is assumed to be Kurtz random relative to A0, A1 must be an element of T and therefore
A0 ⊕A1 must be an element of our arbitrary r.e. open set U . �

We now show that van Lambalgen’s Theorem fails with respect to Kurtz randomness in a larger
class of Turing degrees than Schnorr or recursive randomness.

Theorem 3.8. Every hyperimmune Turing degree contains a Kurtz random real that does not
satisfy van Lambalgen’s Theorem with respect to Kurtz randomness.

Proof. Let E be an element of a hyperimmune Turing degree, and let f ≤T E be such that f is not
majorized by any recursive function; that is, there is no recursive function g such that g(n) ≥ f(n)
for all n. We will build a real A ⊕ B by finite extensions such that A ⊕ B is Kurtz random and
neither A nor B is Kurtz random relative to the other.

We begin by dividing the natural numbers into a sequence of intervals 〈Ik〉k∈ω such that Ik =
{2k, 2k + 1, . . . , 2k+1 − 1} and say that an extension function is a partial recursive function that,
given a finite binary string σ, will output a finite binary string τ such that the length of τ is 2k

for some k and τ extends σ. To ensure that the real we build is Kurtz random, we will require
that it meet all extension functions ϕe that are not constant on either the even half (the bits with
even indices) or on the odd half (the bits with odd indices) of any of these intervals. This will be
enough, since any extension function that is constant on either half of one of these intervals will
produce an r.e. open set with measure strictly less than 1.

We let σ0 be the string with domain I0 that takes the value E(0) on all bits with indices in
I0. At stage n ≥ 1, we assume that we have defined σn−1 and that its domain is the union of the
intervals I0, I1, . . . , Im for some m. Now we list those e ≤ n such that the computation of ϕe(σn−1)
converges within f(n) steps and let e′ be the least index for which this computation converges in
the appropriate time and for which ϕe′ has not already been utilized at a previous stage. If such
an e′ exists, we set τ = ϕe′(σn−1); otherwise, we let τ = σn−1. Suppose that τ is defined on the
intervals I0, I1, . . . , Ik. Now we define σn to be the string that extends τ to the interval Ik+1 by
giving it the value E(n) everywhere on this interval.

Let A⊕ B = limn σn. It is clear that A⊕ B ≤T E. We can see that A⊕ B meets all extension
functions of the appropriate type, since f is not majorized by any recursive function, so A ⊕ B is
Kurtz random. Furthermore, we can calculate E from A. Since the even bits of A ⊕ B are only
constant on the intervals that code the bits of E, all we need to do to find the kth bit of E is to
consider the intervals of A that correspond to intervals Im of A⊕B and have constant values. The
only value A will take on the kth such interval is E(k − 1), so E ≤T A. Similarly, we can see that
E ≤T B, so A ⊕ B ≡T E ≡T A ≡T B, and A and B cannot be Kurtz random relative to each
other. �

We note that since Kurtz randomness coincides with Martin-Löf randomness in the
hyperimmune-free Turing degrees [15], this gives us a full characterization of the Turing degrees
that contain Kurtz random reals for which van Lambalgen’s Theorem fails with respect to Kurtz
randomness.

4. When van Lambalgen’s Theorem holds

We have seen that every high degree contains a recursively random (and therefore Schnorr
random) real for which van Lambalgen’s Theorem fails with respect to recursive randomness and
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Schnorr randomness. One obvious question remains: is there any recursively random or Schnorr
random real that is not Martin-Löf random for which van Lambalgen’s Theorem holds with respect
to either of these notions? In this section, we answer this question positively. We further produce
an example of such a Schnorr random real.

Theorem 4.1. There is a recursively random real that is not Martin-Löf random and satisfies van
Lambalgen’s Theorem for recursive randomness.

Proof. In [7], a recursively random real R in a high but incomplete r.e. Turing degree was con-
structed that is recursively random relative to all elements of a class of measure 1. The existence of
such a real can also be deduced easily from Theorem 1.2 in [1]. This real is clearly not Martin-Löf
random since any Martin-Löf random real that has r.e. Turing degree must be Turing complete [8].
Now we observe that the class of 2-random reals has measure 1, so there is a 2-random real A such
that R is recursively random relative to A. Furthermore, since A is 2-random, A is Martin-Löf
random relative to R.

Since both reals are recursively random relative to each other, A ⊕ R is recursively random by
Theorem 2.1. However, since R is not Martin-Löf random, A⊕R is not either. �

We also outline a construction of a particular Schnorr random real that is not Martin-Löf random.
This construction involves Ω, the halting probability of a universal prefix-free Turing machine.

Example 4.2. To construct a Schnorr random real that is not Martin-Löf random for which van
Lambalgen’s Theorem holds, we will first define two reals based on Ω that are Schnorr random
with respect to each other. We begin by fixing an approximation 〈Ωs〉s∈ω to Ω. We also use the
convergence modulus of Ω, the function defined as cΩ(n) = min{s | Ωs �n = Ω �n}, to define
the sequence 〈an〉n∈ω, where a0 = 0 and an+1 = cΩ(an) + 1 for all n. We use this sequence to
partition the natural numbers into infinitely many intervals 〈In〉n∈ω, where |I0| = 1, |I2k+1| = 1,
and |I2k+2| = ak+1 − ak for all k.

We can now define a real A that is equal to 0 on odd intervals, Ω(0) on I0, and Ω(ak + 1)Ω(ak +
2) . . .Ω(ak+1) on I2k+2. Note that A ≤T Ω. Now consider ΩΩ, which is the halting probability
relative to Ω. This real is Martin-Löf random and thus Schnorr random relative to Ω, and since
A ≤T Ω, it is also Schnorr random relative to A. Furthermore, we can argue that A is Schnorr
random relative to ΩΩ. To do so, we note that A is simply a variant of Ω: to create A, we
distributed the bits of Ω just sparsely enough that no useful information can be obtained about
them in recursive time, even using ΩΩ. Therefore, A⊕ ΩΩ is Schnorr random by Theorem 2.1.

However, A is not Martin-Löf random relative to ΩΩ, since Ω is Martin-Löf random relative to
ΩΩ and cΩ dominates every ΩΩ-recursive function. Van Lambalgen’s Theorem tells us that A⊕ΩΩ

is not Martin-Löf random, so we have an example of a Schnorr random real that is not Martin-Löf
random that satisfies van Lambalgen’s Theorem with respect to Schnorr randomness.

5. Another approach

As mentioned before, there are two primary ways in which we may consider a random real X
in the context of van Lambalgen’s Theorem. First, we may ask, as we have above, whether X can
be recursively decomposed into an X0 and X1 such that one Xi is not random with respect to the
other. However, we may also ask whether X is half of a real for which van Lambalgen’s Theorem
fails, i.e., whether there is another real Y such that X⊕Y is random but van Lambalgen’s Theorem
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fails for X⊕Y . It turns out that every Schnorr random real is half of another Schnorr random real
for which van Lambalgen’s Theorem fails with respect to Schnorr randomness.

Theorem 5.1. If A is a Schnorr random real, then there is a real B such that A⊕ B is Schnorr
random and van Lambalgen’s Theorem fails for A⊕B with respect to Schnorr randomness.

We will need the following result to prove this theorem. Recall that a maximal set is an r.e. set E
that has an infinite complement for which there is no r.e. set W such that |W ∩E| = |W ∩E| =∞.

Proposition 5.2. [3] If R is Schnorr random and E is maximal, then R ∩ E is Schnorr random.

Proof of Theorem 5.1. We consider the case in which A Turing computes the halting set K and
the case in which A does not Turing compute K separately.

If A is Schnorr random and A 6≥T K, by Theorem 2.1 in [7], there is a real B ≥T A such that
B is Schnorr random relative to A precisely when A 6≥T K. Since A is Schnorr random, by our
Theorem 2.1, A⊕B must be Schnorr random. However, since A is not Schnorr random relative to
B, van Lambalgen’s Theorem fails for A⊕B with respect to Schnorr randomness.

If A is Schnorr random and A ≥T K, we let R be Martin-Löf random with respect to A and
consider B = R ∩E for some maximal set E. We note that A⊕R is Schnorr random by Theorem
2.1 and that ω⊕E is maximal. By Proposition 5.2, we can see that A⊕B = (A⊕R)∩ (ω⊕E) is
Schnorr random. However, since E ≤T A, we can create a martingale recursive in A that succeeds
on B by computing E and then betting that B(n) = 0 whenever n is not in E. We can also find
an order function recursive in A that grows sufficiently slowly that this martingale succeeds at the
rate indicated by the order function, so we can see that B is not Schnorr random relative to A and,
once again, van Lambalgen’s Theorem fails for A⊕B with respect to Schnorr randomness. �

We may also ask the following question for those Schnorr random reals which Turing compute
K.

Question 5.3. Suppose that A ≥T K is Schnorr random. Must there be a real B ≤T A such that
B is Schnorr random and A is Schnorr random relative to B?

A positive answer to this question would not only refine the second part of the proof of Theorem
5.1 but also provide a sort of randomness inversion theorem.
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