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Abstract

We give several characterizations of Schnorr trivial sets, including a new lowness
notion for Schnorr triviality based on truth-table reducibility. These characteri-
zations allow us to see not only that some natural classes of sets, including max-
imal sets, are composed entirely of Schnorr trivials, but also that the Schnorr
trivial sets form an ideal in the truth-table degrees but not the weak truth-table
degrees. This answers a question of Downey, Griffiths and LaForte.

1 Introduction

One of the major achievements in the study of Martin-Löf randomness is the discovery
that the following statements about a set A are equivalent [9, 15].

• A is low for Martin-Löf randomness; that is, every set that is Martin-Löf random
unrelativized is also Martin-Löf random relative to A.

• A is low for prefix-free Kolmogorov complexity; that is, the prefix-free Kol-
mogorov complexity relative to A differs from the unrelativized version only by
a constant.

• A is trivial for prefix-free Kolmogorov complexity; that is, the complexity of A�n
is less than or equal to the complexity of 0n plus a constant.
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• A is a basis for Martin-Löf randomness; that is, A is Turing reducible to a set
which is Martin-Löf random relative to A.

Nies also showed in [15] that these sets form an ideal with respect to Turing reducibil-
ity.

Schnorr felt that Martin-Löf’s definition [12] was too restrictive, so he introduced
an alternative definition of randomness [21, 22]. This definition gives rise to a class of
sets with very different properties. For example, Martin-Löf random sets do not exist
in any incomplete r.e. Turing degree [1], while Schnorr random sets exist in every high
Turing degree [16].

A triviality notion can be defined for Schnorr randomness as well as for Martin-
Löf randomness [3, 5, 6]. The triviality notions for Martin-Löf and Schnorr random-
ness are even more different than the original randomness notions. For instance, the
Schnorr trivial sets are not closed downward under Turing reductions [3]. Further-
more, Schnorr triviality does not coincide with lowness for Schnorr randomness when
the latter is defined using Turing reducibility. In fact, only the Schnorr trivial sets
of hyperimmune-free Turing degree are low for Schnorr randomness [7]. Once again,
these notions do not behave in the way we would expect with regard to Turing re-
ducibility.

In this paper, we consider whether there is a way in which the lowness, triviality,
and basis notions for Schnorr randomness can be made to coincide. To this end, we
consider lowness for Schnorr randomness from the perspective of truth-table reducibil-
ity rather than Turing reducibility. In Section 2, we define the notion of “truth-table
lowness for Schnorr randomness” by giving a notion of Schnorr randomness relative
to A that is sensitive to truth-table reducibility. In Section 3, we prove that Schnorr
triviality and truth-table lowness for Schnorr randomness coincide, along with several
other characterizations. In Section 4, we use these results to show that all maximal
sets are Schnorr trivial and that this observation cannot be generalized to r-maximal
or cohesive sets. In Section 5, a proof is given for the result from Franklin’s thesis
[5] that the Schnorr trivial sets form a truth-table ideal, which answers a question
of Downey, Griffiths and LaForte [3]. Furthermore, we show that Schnorr trivial sets
are not closed under weaker reducibilities than truth-table reducibility, such as weak
truth-table reducibility. This suggests that truth-table reducibility is the most appro-
priate reducibility for the study of Schnorr triviality. Finally, in Section 6, we show
that the Schnorr trivial sets cannot be characterized as the bases of Schnorr random-
ness with respect to truth-table reducibility.

We refer the reader to Odifreddi [17, 18], Rogers [19] and Soare [23] for an overview
of recursion theory and to Li and Vitányi [11], Schnorr [21] and Downey, Hirschfeldt,
Nies and Terwijn [4] for an overview of algorithmic randomness. However, before we
begin, we recall the martingale characterizations of Schnorr randomness and recursive
randomness from [21] as well as a definition of Schnorr triviality that is easily seen to
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be equivalent to the original in [3]. A martingale is simply a function d : {0, 1}∗ → R≥0

such that d(σ) = d(σa0)+d(σa1)
2

and a recursive martingale d is a martingale whose val-
ues are uniformly recursive reals. We will refer to unbounded, nondecreasing recursive
functions as order functions throughout the paper.

Definition 1.1. A set R is Schnorr random if there is no recursive martingale d and
no order function f such that d(R�n) ≥ f(n) for infinitely many n.

Definition 1.2. A set R is recursively random if there is no recursive martingale
such that for every m, there is an n such that d(R�n) ≥ m.

Definition 1.3. A set A is Schnorr trivial if for every prefix-free machine M such
that

∑
σ∈dom(M) 2−|σ| = 1, there are a prefix-free machine N and a constant c such

that the following two conditions hold.

1.
∑

σ∈dom(N) 2−|σ| = 1.

2. For all n and all σ ∈ dom(M) such that M(σ) = 0n, there is a τ ∈ dom(N)
such that N(τ) = A�n and |τ | ≤ |σ|+ c.

2 Relativizing Schnorr randomness

Before we consider Schnorr randomness with respect to truth-table reducibility, we
provide some alternate characterizations of the sets that are not Schnorr random and
discuss which of these notions is most suitable for relativization.

Proposition 2.1. The following statements are equivalent for a set R.

1. There is a recursive martingale d and a recursive function f such that d(R �
f(n)) ≥ n for infinitely many n.

2. There is a recursive martingale ḋ and a recursive function ḟ such that ḋ(στ) +
2 ≥ ḋ(σ) for all σ, τ ∈ {0, 1}∗ and ḋ(R�ḟ(n)) ≥ n for infinitely many n.

3. The set R is not Schnorr random; that is, there is a recursive martingale d̈ and
an order function f̈ such that d̈(R�n) ≥ f̈(n) for infinitely many n.

Proof. To see that the first two are equivalent, it is enough to show that the first
implies the second. We assume without loss of generality that d never takes a power of
2 as its value and that the initial value of d is a recursive real number strictly between
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0 and 1. We begin by defining a sequence d0, d1, . . . of recursive martingales with the
same initial value as d that satisfy the following rule for a ∈ {0, 1}.

dk(σ
aa) =

{
d(σaa) if dk(σ) < 2k

dk(σ) if dk(σ) ≥ 2k

Since d(σ) is never a power of 2 and has an initial value between 0 and 1, this case
distinction will be recursive. Now we let

ḋ(σ) =
∑
k≥0

2−k · dk(σ)

for all σ ∈ {0, 1}∗. Furthermore, we define ḟ(n) = max{f(m) : m ≤ 2n+1}. This
translation of the bounds is based on the observation that

∃∞n∃m ∈ {2n, 2n + 1, . . . , 2n+1 − 1} [d(R�f(m)) ≥ m].

By induction over the definition of dk, we can show that for infinitely many n, there
is some m < 2n+1 such that for all k ≤ n, the inequalities dk(R�f(m)) ≥ 2k and
dk(R�ḟ(n)) ≥ 2k hold. It follows that

ḋ(R�ḟ(n)) ≥
∑
k≤n

2−kdk(R�ḟ(n)) ≥
∑
k≤n

2−k · 2k ≥ n

for all but finitely many n. Now we only need to show that

∀σ, τ ∈ {0, 1}∗ [ḋ(σaτ) + 2 ≥ ḋ(σ)].

Given any σ and τ , we choose n to be the maximal integer such that there is a prefix
θ of σ with 2n ≤ d(θ). For k > n, the martingale dk will behave like d, while for
k ≤ n, the martingale dk is constant above σ. Then the following two equations hold.

ḋ(σ) =
∑
k≤n

2−kdk(σ) +
∑
k>n

2−k · d(σ)

ḋ(σaτ) =
∑
k≤n

2−kdk(σ
aτ) +

∑
k>n

2−k · d(σaτ)

The second term in the formula for ḋ(σ) is bounded by 2, and this is the only part
that may change when we consider σaτ instead of σ. Since n was chosen such that∑

k≤n 2−kdk(σ
aτ) =

∑
k≤n 2−kdk(σ) and

∑
k>n 2−kdk(σ) ≤ 2, the condition

∀σ, τ ∈ {0, 1}∗ [ḋ(σaτ) + 2 ≥ ḋ(σ)]
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is satisfied. Therefore, the first statement implies the second.
To prove that the second statement implies the third, we first show that ḟ can

be assumed to be strictly increasing. Given a recursive function ġ, one can define a
function ḟ recursively by the following two equations.

ḟ(0) = ġ(0) + ġ(1) + ġ(2)

ḟ(n+ 1) = ġ(n+ 3) + ḟ(n) + 1

There are infinitely many n such that ḋ(R�ġ(n+2)) ≥ n+2, so, since ḟ(n) ≥ ġ(n+2)
for all n, it follows that ḋ(R�ḟ(n)) ≥ n. Now let f̈(n) = max{m : m = 0∨ ḟ(m) ≤ n}
for all n. As there are infinitely many m such that

ḋ(R�ḟ(m)) ≥ m,

we can take the value n = ḟ(m) for these m and see that

ḋ(R�n) ≥ f̈(n).

Therefore, we can set d̈ = ḋ to see that the third statement follows from the second.
To see that the second statement follows from the third, assume that d̈ and f̈ are

given and that ḋ is built from d̈ as ḋ was built from d above. Furthermore, for every
m, let

f(m) = min{n : f̈(n) > 2m+4}

and note that f will always be defined because f̈ is unbounded. Furthermore, for all
σ, τ ∈ {0, 1}∗, ḋ(σaτ) ≥ m whenever d̈(σ) ≥ 2m. For infinitely many m there is an
n ∈ {f(m), f(m) + 1, . . . , f(m + 1) − 1} such that d̈(R�n) ≥ f̈(n). It follows that
ḋ(R�naτ) ≥ m for all τ and, in particular, that ḋ(R�ḟ(m)) ≥ m.

This characterization of sets that are not Schnorr random will help us to establish
a link between the sets that are Schnorr random relative to A in the context of
truth-table reducibility and the Schnorr triviality of A. First, we show that the third
characterization in Proposition 2.1 is not suitable for relativization.

Theorem 2.2. There is a Schnorr random set R ≡T K and a recursive martingale
d such that for every A ≥T K, there is a nondecreasing unbounded function lb ≤tt A
such that d(R�n) ≥ lb(n) for all n.

Proof. Nies, Stephan, and Terwijn [16] showed that there is a set R ≡T K which is
Schnorr random but not recursively random. Therefore, there is a recursive martingale
d which succeeds onR, although not with the bounds required for Schnorr randomness.
In Proposition 2.1, we showed that we can replace d by another recursive martingale
ḋ such that ḋ(R �m) ≥ ḋ(R �n) − 2 for all n and all m > n. Since our original
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d was truth-table computable from K and this transformation preserves truth-table
reducibility, we can see that ḋ ≤tt K. Now let lb(n) be the largest natural number
k such that either k = 0 or there is a number m ≤ n for which ḋ(R�m) ≥ k + 2
and R�m can be computed from A in no more than m steps. Since all the numbers
involved are bounded, this last statement can be evaluated in the context of a truth-
table reduction. It is easy to see that ḋ(R�n) ≥ lb(n) for all n. Furthermore, lb is
nondecreasing by definition. It is also easy to see that lb is unbounded, as ḋ takes
arbitrarily large values on R.

This indicates that the following definition is a more suitable candidate for a notion
of relativized Schnorr randomness in the context of truth-table reducibility.

Definition 2.3. A set R is truth-table Schnorr random relative to A if and only if
there is no martingale d ≤tt A and no recursive bound function b such that

∃∞n [d(R�b(n)) ≥ n].

A set A is truth-table low for Schnorr randomness if every Schnorr random set R is
truth-table Schnorr random relative to A.

Remark 2.4. Technically, we should consider all bound functions b that are truth-
table reducible to A instead of only recursive bound functions, but this is not neces-
sary. The proof of the second statement from the first in Proposition 2.1 preserves
truth-table reducibility relative to a given set, so we may assume this without loss of
generality. If a bound function is computed via a truth-table reduction, there are only
finitely many choices for its value at any given n if the oracle is unknown. Hence, given
a bound b̃ ≤tt A, we can obtain a new recursive bound b(n) by taking the maximum
of all possible values of b̃(4n + 4). There are infinitely many n for which there is an
m ∈ {4n, 4n+ 1, 4n+ 2, 4n+ 3} such that d(R�̃b(m)) ≥ m, so d(R�b(n)) ≥ n for these
n as well. Thus, d and the new recursive bound b witness that R is not truth-table
Schnorr random relative to A.

3 Characterizing Schnorr triviality

In this section, we will give several equivalent characterizations of Schnorr triviality.
The following theorem, which states that every set A must either truth-table compute
a martingale that succeeds on some recursively random set in the sense of Schnorr or be
“captured” in a particular way by a recursive function, is an important preliminary
result. We will show later that the second statement in the following theorem is
equivalent to Schnorr triviality.

Theorem 3.1. For every set A, exactly one of the following two statements holds.
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1. There is a recursively random set R that is not truth-table Schnorr random
relative to A.

2. For every recursive function u, there is a recursive function g such that for
almost all n,

A�u(n) ∈ {g(0), g(1), . . . , g(16n)}.

Proof. We will show that for every recursive function u, either the function g exists
or a set R ≤T A′′ can be constructed which is recursively random but not truth-
table Schnorr random relative to A. Note that it is sufficient to consider only strictly
increasing functions u.

Construction. Let d1, d2, . . . be a listing of all the recursive martingales that only
assume positive values. It is clear that it is enough to diagonalize against these
martingales. We will incorporate each of these martingales into the martingale that
we are constructing, ḋ, at some level ck.

For each n, we define Jn = {0, 1}u(n)+1 and partition the natural numbers into
a sequence of intervals Iσ, where σ ∈

⋃
n Jn, such that if σ ∈ Jn, then Iσ has 2n

elements. Now we inductively define our set R and martingale ḋ as follows.
At the beginning, we set k = 0 and define the initial value of ḋ to be 1. For each

successive Iσ, we let n be the unique number such that σ ∈ Jn, let m = min(Iσ) and
let k be the largest index of the martingales incorporated into ḋ so far. Note that
c1, c2, . . . , ck are already defined and assume values between 0 and m. We will extend
the definition of the martingale ḋ on all τ ∈ {0, 1}∗ with m + 1 ≤ |τ | ≤ m + 2n such
that the equation

ḋ(τ) = 2−k +
∑

1≤j≤k

2−j · dj(τ)

dj(τ�cj)

holds. If k = 0, this just means that ḋ(τ) = 1 for all such τ . We can see that this
equation will hold at each stage of the construction.

Now that we have extended ḋ, we check to see which of the following three cases
holds for σ.

Case 1: σ 6= A�u(n).

Case 2: σ = A�u(n) and ḋ(R�ma12n) ≤ ḋ(R�m) + 2−n.

Case 3: σ = A�u(n) and ḋ(R�ma12n) > ḋ(R�m) + 2−n.

In Cases 1 and 3, we define R on Iσ to be such that ḋ(R�(m + 2n)) is as small as
possible. In Case 1, we can see that this will guarantee that

ḋ(R�(m+ 2n)) ≤ ḋ(R�m).
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In Case 3, the 2−n gain on the sequence 12n must be balanced by a loss of at least 8−n

on at least one of the 4n − 1 other possible extensions of R on Iσ, so

ḋ(R�(m+ 2n)) ≤ ḋ(R�m)− 8−n.

We do not increase k in either of these cases.
In Case 2, let R(m+ i) = 1 for i ∈ {1, 2, . . . , 2n}, and choose ck+1 = m+ 2n such

that
ḋ(τ) = 2−k−1 +

∑
1≤j≤k+1

2−j · dj(τ)

dj(τ�cj)

for all τ ∈ {0, 1}m+2n. Note that

∀τ ∈ {0, 1}m+2n+1 [ dk+1(τ)

dk+1(τ�ck+1)
= 1],

so the new definition and the old definition of ḋ result in the same value at level
m+ 2n. We have now incorporated another recursive martingale into ḋ.

Verification. We must consider both the possibility that Case 2 occurs infinitely
often and the possibility that Case 2 occurs finitely often. If Case 2 occurs infinitely
often, every martingale dk is incorporated on some level ck into the construction and

ḋ(R�m) = 2−k dk(R�m)
dk(R�ck)

+ d̈(R�m)

for some martingale d̈ and all m ≥ ck. It follows that if dk witnesses that R is not
recursively random, so does ḋ. However, by our construction, ḋ gains at most 2−n in
Case 2 and loses capital in Case 1 and Case 3. Therefore, ḋ does not demonstrate
that R is not recursively random.

On the other hand, in this case, IA�(u(n)+1) ⊆ R for infinitely many n. This means
that a martingale truth-table computable from A that divides the initial capital of 1
into pieces of size 2−n−1 in the beginning and uses each such piece to bet 2n times
that all the members of IA�(u(n)+1) are in R can be constructed. If this succeeds, 2n−1

is gained on IA�(u(n)+1). This strategy will succeed for infinitely many n, and this
martingale will witness that R is not truth-table Schnorr random relative to A.

Now we consider the possibility that Case 2 occurs only finitely often. For almost
all n, if σ = A�(u(n)+1), Case 3 occurs and the capital decreases by 8−n. Furthermore,
when Case 1 occurs, the capital does not increase. Therefore, the capital achieves a
maximal value r at some stage. It follows that for almost all n, there are only r · 8n
many strings σ ∈ Jn for which at least 8−n is lost while following R. Furthermore, as
the algorithm runs through Case 1 and Case 3 all but finitely many times, both the
martingale ḋ and the set R are recursive. This means that the r · 8n strings σ ∈ Jn on
which the capital decreases by at least 8−n can be computed and there is a recursive
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function g such that for almost all n, there is a number ` ∈ {16n−1 + 1, 16n−1 +
2, . . . , 16n} with g(`) = σ for each such string σ. It follows that

A�(u(n) + 1) ∈ {g(0), g(1), . . . , g(16n)}

for almost all n, so A�u(n) ∈ {g(0)�u(n), g(1)�u(n), . . . , g(16n)�u(n)}.

We can now develop several natural characterizations of Schnorr triviality that will
be used throughout the paper.

Theorem 3.2. The following statements are equivalent for a set A.

1. A is Schnorr trivial.

2. There is a recursive function h such that for all f ≤tt A, there is a recursive
function g such that f(n) ∈ {g(0), g(1) . . . , g(h(n))} for almost all n.

3. For every order function h and every f ≤tt A, there is a recursive function g
such that ∀n∃m ≤ h(n) [f(n) = g(〈n,m〉)].

4. A is truth-table low for Schnorr randomness.

Proof. We begin by observing that saying that A is Schnorr trivial is equivalent
to saying that for every recursive probability distribution µ on {0, 1}∗, there is a
recursive probability distribution ν on {0, 1}∗ and a rational q > 0 such that ν({A�n})
≥ q · µ({0, 1}n+1) holds for all n. It is simple to replace a recursive-valued prefix-
free Turing machine by a recursive probability distribution, and, given a recursive
probability distribution, we can use a standard argument with Kraft-Chaitin sets to
produce prefix-free Turing machines. For instance, such an argument appears in [6].
Therefore, we may use this as our characterization of Schnorr triviality.

(1.) implies (2.): Assume that f ≤tt A is given via a tt-reduction ϕe and let u(n)
be the use function for ϕe. Without loss of generality, we can assume that u is not
only recursive but strictly increasing. We will let h(n) = 3n. Now define µ such that
µ({0, 1}u(n)) = 2−n−1 for all n. By (1.), there is another measure ν and a constant q
such that ν({A�u(n)}) ≥ q · 2−n−1. Now we define a function g such that {g(3n−1),
g(3n−1 + 1), . . . , g(3n − 1)} contains ϕσe (n) for all σ and n such that ν({σ}) > 31−n.
Note that since there are at most 3n−1 possible choices for σ for each n and we may
have 2 · 3n−1 such σ for each n in our construction, we can construct g recursively.
Furthermore, ν(f(n)) > q · 2−n−1, so ν(f(n)) > 31−n for almost all n, and g will be as
required.
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(2.) implies (3.): Let h be the order function of (3.), and let h̃ be the corresponding
recursive bound of (2.). Let f ≤tt A be given. We define the function u as u(n) =
min{m : h(m) > h̃(n + 1)} to let us translate the bound h̃ into h. Here, we do not
consider f itself but strings of the form f �u(n), so any information obtained from
statement (2.) actually gives us the values f(m) for all m < u(n). These strings can
also be computed via a truth-table reduction of A, so by (2.), there is a recursive
function g̃ such that

∀∞n [f�u(n) ∈ {g̃(0), g̃(1), . . . , g̃(h(n))}].

This permits us to define g(〈m,n〉) to be the nth component of g̃(m) whenever g̃(m)
is a string of length at least n and as 0 otherwise. The function u is defined such that
for every n there is a k with h̃(k) < h(n) and u(k) ≥ n. Therefore, f�u(k) appears
among the first h(n) values of g̃, and f(n) ∈ {g(〈n, 0〉), g(〈n, 1〉), . . . , g(〈n, h(n)〉)}.

(3.) implies (4.): As an intermediate step, we show that for every martingale d ≤tt A
and every recursive function u, there is a recursive martingale d̃ such that for all sets
B, all n > 0 and all m ≤ u(n), the inequality d̃(B�m) · n ≥ d(B�m) holds.

We assume that d ≤tt A and that u is a strictly increasing recursive function. We
will construct a recursive martingale d̃ such that d and d̃ differ by at most a factor of
n on inputs shorter than u(n). To do this, let h(n) = 2n and choose f so f(n) is a
representation of the unique martingale dn that satisfies

∀σ ∈ {0, 1}u(4n+1)+1 ∀τ ∈ {0, 1}∗ [dn(σaτ) = d(σ)]

and has initial value 1. Now we observe that there is a function g which outputs
representations of martingales such that the martingale d̃〈n,m〉 = g(〈n,m〉) is recursive

and such that for every n, there is an m < 2n such that d̃〈n,m〉 = dn. Now let

d̃(σ) =
∑
n>0

∑
m<2n

4−nd̃〈n,m〉(σ).

It is easy to see that d̃ is a recursive function that satisfies the equation d̃(σ) =
1
2
(d̃(σa0) + d̃(σa1)). Furthermore, the initial value of d̃ is

∑
n>0

∑
m<2n 4−n · 1 = 1,

so d̃ is a recursive martingale. It is also true that

∀σ ∈ {0, 1}∗ ∀n > 0 [|σ| ≤ u(4n+1) + 1⇒ d̃(σ) ≥ 4−nd(σ)]

since there is some m < 2n with d(σ) = d̃〈m,n〉(σ) and the weight of d̃〈m,n〉(σ) in the
sum is 4−n. It follows that for each m ∈ {4n, 4n+1, . . . , 4n+1−1} and each σ of length
at most u(m), the inequality d̃(σ) ·m ≥ d(σ) holds.

Now we prove (4.). Assume that R is a set that is not truth-table Schnorr random
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relative to A, so there must be a martingale d ≤tt A and a recursive bound function
b such that

∃∞n [d(R�b(n)) ≥ n].

Let u(n) = b(4n2). By assumption, there is a recursive martingale d̃ such that

∀n [d̃(R�u(n)) · n ≥ d(R�u(n))].

Furthermore, there are infinitely many n such that there is an m ∈ {4n2, 4n2 + 1, . . . ,
4(n+ 1)2− 1} such that d(R�b(m)) ≥ m ≥ 4n2. It follows that if such an m exists for
n, the inequality d(R�b(4(n+ 1)2)) ≥ n2 holds. Since u(n+ 1) = b(4(n+ 1)2), we can
deduce that

∃∞n [d̃(R�u(n)) ≥ n]

and we are done.

(4.) implies (2.): We let h(n) = 16n and apply Theorem 3.1.

(3.) implies (1.): Let µ be a recursive probability distribution on {0, 1}∗. Without
loss of generality, µ(σ) > 0 for all σ. There is a strictly increasing recursive function
f such that

∀n [µ({σ : |σ| ≥ f(n)}) ≤ 2−n].

By (3.), there is a recursive function g such that

∀n∀m ≤ f(n) [A�m ∈ {g(〈m, 0〉), g(〈m, 1〉), . . . , g(〈m,n〉)}].

Without loss of generality, we can assume that for everym and k, the value of g(〈m, k〉)
is a string of length m+ 1. It follows from our choice of f that∑

f(n)≤k≤f(n+1)−1

µ({0, 1}k+1) ≤ 2−n

and that therefore ∑
f(n)≤k≤f(n+1)−1

µ({0, 1}k+1) · (n+ 1) ≤ (n+ 1) · 2−n.

Now we use the fact that
∑

n(n+ 1) · 2−n = 4 to see that for each n and each length
k ∈ {f(n), f(n) + 1, . . . , f(n + 1) − 1}, there are n + 1 possible strings of length
k which are assigned a measure of 0.1 · µ({0, 1})k+1. Therefore, the sum over the
assigned measure belonging to n is bounded by 0.1 · (n + 1) · 2−n for each n and by
0.4 if summed over all n. We can distribute the remaining measure of about 0.6 to
obtain a measure ν such that

∀n [ν({σ : f(n) ≤ |σ| < f(n+ 1)}) ≥ 0.25 · (n+ 1) · 2−n]
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and
∀n∀m ≤ f(n) [ν(g(〈m,n〉)) ≥ 0.1 · µ({0, 1}m+1)].

It follows that
∀m [ν({A�m}) ≥ 0.1 · µ({0, 1}m+1)],

so ν has the required properties.

Remark 3.3. Since truth-table reductions depend only on the values of the oracle
below the use, we can easily get an additional characterization. Let h be a recursive
function such that h(1) > h(0), h(n + 2)− h(n + 1) ≥ h(n + 1)− h(n) for all n and
h(n+2)−h(n+1) > h(n+1)−h(n) for infinitely many n. A set A is Schnorr trivial
if and only if for every recursive function u, there is a recursive function g such that

∀n [A�u(n) ∈ {g(h(n)), g(h(n) + 1), . . . , g(h(n+ 1)− 1)}].

4 Maximal and Cohesive Sets

In this section, we produce some natural examples of Schnorr trivial sets by showing
that all maximal sets are Schnorr trivial and investigate the extent to which this result
can be generalized. It turns out that the proof relies heavily on the fact that maximal
sets are dense simple, so some r-maximal sets are not Schnorr trivial. Furthermore,
every maximal set is the complement of a cohesive set, so there are Schnorr trivial
cohesive sets. However, this result does not generalize to all cohesive sets and, in fact,
that only cohesive sets of high Turing degree can be Schnorr trivial.

We recall that a setA is dense simple if it is r.e. and its principal function dominates
every recursive function. We further recall that A is hyperhypersimple if there is no
disjoint weak array {Fn}n∈N such that for all n, Fn ∩ (N − A) 6= ∅ and that A is
maximal if A is r.e., the complement of A is infinite and there is no r.e. set W such
that W ∩ A and W ∩ (N− A) are both infinite.

Theorem 4.1. Every superset of a dense simple set is Schnorr trivial. In particular,
maximal and hyperhypersimple sets are Schnorr trivial.

Proof. Let A be a dense simple set and let B be a superset of A. If u is a recursive
function then for almost all n, |{0, 1, 2, . . . , u(n)} − A| ≤ n. This means that if we
are given n, we can enumerate A until a stage s is found such that all but n elements
below u(n) are enumerated into As and then list the 2n strings σ of length u(n) + 1
such that σ(x) = 1 for all x ∈ {0, 1, 2, . . . , u(n)} ∩ As. The string B�(u(n) + 1) is
among these 2n strings, so B is Schnorr trivial by Remark 3.3. The second statement
follows from the fact that every maximal set is hyperhypersimple and dense simple.
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We observe that we can also apply Remark 3.3 to dense simple sets to give an alternate
proof of a result that appeared in [5]; namely, that there is a Π0

1 class of Schnorr trivial
sets with no recursive members. To see this, we simply produce a partial recursive
function ψ that has no total extension whose domain is a maximal set and consider
the class of all sets whose characteristic function extends it. Since every maximal set
is dense, we can recursively bound the number of elements < u(n) that are not in the
domain for any n and then list a small number of possibilities for the strings of length
u(n) that match ψ below u(n).

Now we show that Theorem 4.1 does not extend to r-maximal sets. Recall that a
set A is r-maximal if A is r.e., its complement is infinite and there is no recursive set
R such that R ∩ A and R ∩ (N− A) are both infinite.

Theorem 4.2. There is an r-maximal set that is not Schnorr trivial.

Proof. Stephan [24] proved that there is an r-maximal set A that can be interpreted
as a set of strings so that every string not in A is incompressible for prefix-free Kol-
mogorov complexity (up to a constant). Now let f(n) be the lexicographically least
string in ({0, 1}n − A) ∪ {1n}. It is clear that f ≤tt A and that f(n) has high Kol-
mogorov complexity whenever {0, 1}n 6⊆ A. The latter is true for infinitely many n,
so it follows that there is no recursive function g such that

∀∞n [f(n) ∈ {g(0), g(1), . . . , g(2n/2)}],

and we can see from Theorem 3.2 (2.) that A is not Schnorr trivial.

We say that A has high Turing degree if and only if the halting problem relative
to K is Turing reducible to the halting problem relative to A, which is equivalent
to the existence of an A-recursive function that dominates every recursive function
[14]. Recall that an infinite set A is cohesive if there is no r.e. set W such that both
W ∩ A and W ∩ (N − A) are infinite. Jockusch and Stephan [10] showed that there
are cohesive sets that do not have high Turing degree. We show now that no such set
is Schnorr trivial.

Theorem 4.3. No cohesive set of nonhigh Turing degree is Schnorr trivial.

Proof. Let A be a cohesive set of nonhigh Turing degree and let a0, a1, a2, . . . be an
enumeration of A in strictly ascending order. The function n 7→ a3n is A-recursive
and, as A is not high, there is a strictly increasing recursive function h such that
h(n) > a3n for infinitely many n. Let In = {h(n), h(n) + 1, . . . , h(n + 1) − 1} for
all n. There are infinitely many n such that |A ∩ In| > 2n, since otherwise there
would be a constant c such that h(n) ≤ a2n+1+c for all n, contradicting the fact that
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∀∞n [2n+1 + c < 3n].
Now let f(n) = min((A∩ In)∪ {h(n+ 1)}). This function is truth-table reducible

to A. If A were Schnorr trivial, then there would be a recursive function g such that
f(n) ∈ {g(2n), g(2n + 1), . . . , g(2n+1 − 1)} for all n. This would allow us to define the
recursive set

B = {g(m) : ∃n [2n ≤ m < 2n+1 ∧ h(n) ≤ g(m) < h(n+ 1)]}.

If |A ∩ In| > 2n, then the set B will contain at least one and at most 2n of the
elements of A ∩ In, so there will be infinitely many n such that A ∩ In ∩ B 6= ∅ and
A∩In−B 6= ∅. It follows that A∩B and A−B must both be infinite. This contradicts
our assumption that A is cohesive, so A cannot be Schnorr trivial.

This result can be generalized to show that the Turing degree of a nonhigh cohesive
set does not contain a Schnorr trivial set. The basic idea of the proof is the same, but
the details have to be altered somewhat.

Corollary 4.4. If A is cohesive, A ≤T B and B is not high, then B is not Schnorr
trivial.

Proof. Assume that A ≤T B and let u(n) be the use function for the computation
of a3n relative to B, where a0, a1, a2, . . . is a strictly ascending enumeration of A
as in the previous theorem. Without loss of generality, we may suppose that u is
strictly monotonically increasing and that u(n) > a3n for all n. We now observe that
there must be a strictly increasing recursive function h such that h(n+ 1) > u(h(n))
for infinitely many n. Otherwise, the B-recursive function ũ inductively defined by
ũ(0) = 0 and ũ(n + 1) = u(ũ(n)) would dominate all recursive functions, which is
impossible since B is not high.

Now define f(n) to be the maximal element of A computed from B in h(n + 1)
steps and assume for a contradiction that B is Schnorr trivial. Note that f(n) ∈
{g(2n), g(2n + 1), . . . , g(2n+1 − 1)} for all n by Remark 3.3. Now let

E = {g(m) : ∃n [2n ≤ m < 2n+1 ∧ h(n) ≤ g(m) < h(n+ 1)]}.

Suppose that n is one of the infinitely many m such that u(h(m)) < h(m + 1).
Since h(n) ≥ n, there are more than 3n elements of A above h(n) that are computed
relative to B within h(n+ 1) steps. One of these elements is f(n), which is in the set
E. However, there are only 2n elements in E between h(n) and h(n + 1), so A ∩ E
and A − E both have an element between h(n) and h(n + 1). It follows that A ∩ E
and A − E are both infinite, which contradicts the assumption that A is cohesive.
Therefore, B cannot be Schnorr trivial.
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5 Reducibilities

In this section, we will consider Schnorr triviality in the context of stronger reducibil-
ities than Turing reducibility, particularly with respect to downwards closure. How-
ever, our first result involves not only downwards closure but closure under join as
well. Downey, Griffiths and LaForte [3] proved that Schnorr trivials are closed down-
wards under truth-table reductions and asked whether they are also closed under join.
Franklin [5] gave a positive answer to this question.

Theorem 5.1 [3, 5]. Let A and B be Schnorr trivial and let C ≤tt A⊕ B. Then C
is Schnorr trivial.

Proof. Let f ≤tt C. Then f ≤tt A ⊕ B, and we let u be the use function for this
truth-table reduction. Remark 3.3 tells us that there are recursive functions gA and
gB such that the following conditions hold for all n.

A�(u(n) + 1) ∈ {gA(2n), gA(2n + 1), . . . , gA(2n+1 − 1)}
B�(u(n) + 1) ∈ {gB(2n), gB(2n + 1), . . . , gB(2n+1 − 1)}

It follows that f(n) can be computed from a pair 〈gA(i), gB(j)〉 with i, j < 2n in
such a way that the computation terminates for all such pairs, although some of these
computations will probably produce incorrect values. There are 4n such pairs and each
of these pairs produces one possible value for f(n), so we can construct a function g
that lists exactly 4n candidates for each n, including f(n). It follows from part (2.)
of Theorem 3.2 that C is Schnorr trivial.

One might ask whether truth-table reducibility can be replaced by weak truth-table
reducibility or bounded Turing reducibility in the theorem above. We can now show
that the Schnorr trivial sets are not closed under either, so of these three, only truth-
table reducibility preserves Schnorr triviality. Recall that a weak truth-table (wtt)
reduction is a Turing reduction for which the use is bounded by a total recursive
function and that a bounded Turing (bT) reduction is a Turing reduction for which
there is a constant c that bounds the number of queries that are made to the oracle
for any input. These two restrictions on Turing reducibility can be combined to
generate a reducibility called bounded weak truth-table (bwtt) reducibility. We say
that A ≤wbtt B if and only if there are a finite set of recursive functions f1, f2, . . . , fn
and a partial-recursive function ϑ such that ϑ(x,B(f1(x)), . . . , B(fn(x)))↓= A(x) for
all x.

Theorem 5.2. Given a nonrecursive r.e. set A, there is an r.e. set B such that B
is not Schnorr trivial and B ≤bwtt A. In particular, the Schnorr trivial sets are not
closed under ≡bwtt, ≡wtt and ≡bT .
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Proof. Let such an A be given. We begin by partitioning the natural numbers
recursively into intervals I〈i,j〉 of length 2j. For x ∈ A, we let ΦA(x) be the stage at
which x is enumerated into A; for x /∈ A, we let ΦA(x) be undefined.

Let ψ(〈i, j〉) be min(I〈i,j〉 − {ϕi(〈j, k〉) : k < |I〈i,j〉| − 1}) whenever j ∈ A and
ϕi(〈j, k〉) is defined for all k < |I〈i,j〉| − 1 within ΦA(j) steps. We define B to be the
range of ψ. Note that B is recursively enumerable.

Now we show that B ≤bwtt A with the parameter n = 1; that is, that the reduction
uses only one query and the position of the query is given by the recursive function
that maps the members of each interval I〈i,j〉 to j. The reduction first determines
whether j is in A. If not, B ∩ I〈i,j〉 = ∅. If so, one can compute ΦA(j) and then check
to see whether ψ(〈i, j〉) is defined by running each of the finitely many corresponding
computations ϕi(〈j, k〉) for ΦA(j) steps. If ψ(〈i, j〉) is defined, then B ∩ I〈i,j〉 is equal
to {ψ(〈i, j〉)}. Otherwise, we will have B ∩ I〈i,j〉 = ∅. As this reduction is a bounded
Turing reduction with only one query and this query is j for any x ∈ I〈i,j〉, the
reduction is also a weak truth-table reduction. This shows that B ≤bT A and that
B ≤wtt A.

If B were Schnorr trivial, there would be a total recursive function ϕi such that for
all j and x with {x} = B ∩ I〈i,j〉, x would be in the set {ϕi(〈j, k〉) : k < |I〈i,j〉| − 1}. It
now follows from the construction of B that the computation time for the members of
the set would be larger than ΦA(j) for almost all j ∈ A, as otherwise infinitely many
diagonalizations would take place. If this were the case, A would be recursive and we
would have a contradiction, so B cannot be Schnorr trivial. It follows that A⊕ B is
not Schnorr trivial and is bwtt-, wtt- and bT-equivalent to A.

As maximal sets are Schnorr trivial, there are nonrecursive Schnorr trivial r.e. sets;
further examples are provided by Franklin [5]. Therefore, the Schnorr trivial sets are
not closed under ≡bwtt, ≡wtt and ≡bT and, in particular, are not closed downwards
under ≤bwtt, ≤wtt and ≤bT .

This result can be generalized to characterize the Schnorr trivial sets that wtt-compute
only other Schnorr trivial sets.

Theorem 5.3. Let A be Schnorr trivial. Then every B ≤wtt A is Schnorr trivial if
and only if every function g ≤wtt A is majorized by a recursive function.

Proof. Assume that there is a function g ≤wtt A that is not majorized by any
recursive function. Without loss of generality, we can assume that g is monotonically
increasing. Now we construct B so that B ≤wtt A and B is not Schnorr trivial. We
take B(〈x, 0〉) = A(x) for all x. If the computation of ϕx(y) converges within g(y)
steps to a string such that the 〈x, y + 1〉st bit of this string exists and is 0, we set
B(〈x, y + 1〉) = 1. Otherwise, we define B(〈x, y + 1〉) = 0. It is easy to see that
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B ≡wtt A.
Now we let f(n) = B �〈2n+1, 2n+1〉 and assume for a contradiction that ϕx is a

recursive function satisfying

∀n [f(n) ∈ {ϕx(2n), ϕx(2
n + 1), . . . , ϕx(2

n+1 − 1)}].

Then there is some n such that g(2n) is greater than the maximal computation time
of ϕx on inputs below 〈2n+1, 2n+1〉. It follows that for y ∈ {2n, 2n + 1, . . . , 2n+1 − 1},
the value of B(〈x, y〉) is not equal to the corresponding bit given by ϕx(y). Hence the
assumption is wrong and so, by Remark 3.3, B is not Schnorr trivial.

Now assume that every function wtt-reducible to A is majorized by a recursive
function. Assume that B ≤wtt A and let g be the function that gives the number
of steps in the computation of B(n) from A for every n. Then g is majorized by a
recursive function h. This lets us define a truth-table reduction from B to A which,
for each n, gives the value computed if the computation terminates in h(n) steps and
0 otherwise. This shows that B ≤tt A and therefore that B is Schnorr trivial.

Miller and Martin [14] showed that for all nonrecursive A ≤T K, the convergence
modulus, defined as cA(x) = min{s > x : ∀y ≤ x [As(y) = A(y)]}, is wtt-reducible to
A and not majorized by any recursive function; see Odifreddi [18, Exercise XI.1.8.(b)].
This gives the following corollary when combined with the previous result.

Corollary 5.4. If A ≤T K and A is not recursive, then some set in the wtt-degree of
A is not Schnorr trivial.

However, we can also use Theorem 4.1 to provide an example of a wtt-degree that
consists entirely of Schnorr trivial sets and is contained in a high Turing degree.

Proposition 5.5. Let A be maximal, let G be 2-generic and consider their union
A ∪G. Every B ≤wtt A ∪G and every B ≤bT A ∪G is truth-table reducible to A ∪G
and thus Schnorr trivial. Furthermore, A ∪G has high Turing degree.

Proof. Let A and G be as above. By Theorem 4.1, A ∪ G is Schnorr trivial. Now
let B ≤wtt A∪G. Then there must be an index e such that B = ϕA∪Ge and the use is
bounded by a recursive function h. Let Gn = G ∩ {0, 1, . . . , n} for all n.

Therefore, for any n there are an xn and a set En ⊆ {n + 1, n + 2, . . . , h(xn)}
such that ϕGn∪En∪A

e (xn) is undefined. There is a K-recursive function that computes
such an xn and En for every n. As G is 2-generic, there is an n such that G ∩ {n +
1, n + 2, . . . , h(xn)} = En. It follows that ϕA∪Ge (xn) is undefined, which contradicts
our choice of e.

Hence, by the 2-genericity of G, there must be an n such that, for all subsets
E ⊆ {n+ 1, n+ 2, . . .} and all x, ϕGn∪E∪A

e (x) is defined. Then there must be some d
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such that ϕXd (x) is defined as follows based on whether the corresponding computation
or search terminates first.

Case 1: ϕXd (x) = ϕXe (x) if the latter computation terminates.

Case 2: ϕXd (x) = 0 if there is an m ≤ n such that (G ∪ A)(m) 6= X(m).

Case 3: ϕXd (x) = 0 if there is an m > n such that m ∈ A and X(m) = 0.

Note that the second and third cases do not occur when X = A ∪ G, so ϕA∪Gd =
ϕA∪Ge = B. However, ϕXd is total for every oracle X since the cases where it could be
undefined do not occur, so B ≤tt A. It follows that B is Schnorr trivial as well.

Now assume thatB ≤bT A∪G. Without loss of generality, we may suppose that the
computation involves exactly i queries for every input. Now let f1(x), f2(x), . . . , fi(x)
be the places where the queries occur. We show by induction that fj ≤wtt A ∪G for
all j ≤ i. Given j, we assume that this is true for all k < j. Then there is a recursive
upper bound on the values of all fk with k < j, and we call this bound gj. Therefore,
all the queries made to calculate fj(x) are bounded by gj(x) and so fj ≤wtt A ∪ G.
This gives us a recursive function gi+1 such that gi+1(x) > fk(x) for all k ≤ i, so
B ≤wtt A ∪ G. It follows that B is Schnorr trivial by the previous paragraph of this
proof.

Note that A ∪ G is coinfinite since G is 2-generic. Furthermore, as A is dense
simple and A ∪ G ⊇ A, the complement of A ∪ G is also dense immune. Therefore,
the function mapping n to the nth nonelement of A ∪ G dominates every recursive
function and it follows that A ∪G has high Turing degree.

The wtt-degree of A∪G contains only Schnorr trivial sets. Since the class of 2-generic
sets is closed under complementation, the wtt-degree of A∪ (N−G) also consists only
of Schnorr trivial sets. However, as A = (A ∩G) ∩ (A ∪ (N−G)), A is wtt-reducible
to the join of the two sets and there is a set B ≡wtt A which is not Schnorr trivial.
Therefore, the class of those sets whose wtt-degree entirely consists of Schnorr trivial
sets is not closed under join.

In the revision of [23], Soare emphasizes the distinction between every function
in a degree being majorized by a recursive function and a degree not containing a
hyperimmune set. While these notions are the same for Turing degrees, this example
shows that they differ for wtt-degrees; that is, A ∪G satisfies the former but fails to
satisfy the latter, as N−(A∪G) is hyperimmune. It is not too difficult to construct a set
of hyperimmune Turing degrees such that its wtt-degree has both of these properties.
For instance, we may consider R ⊕ G, where R is a hyperimmune-free Martin-Löf
random set and G is 2-generic relative to R. We may ask whether such a construction
can be combined with the notion of Schnorr triviality.
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Question 5.6. Is there a Schnorr trivial set A of hyperimmune Turing degree such
that every function weakly truth-table reducible to A is majorized by a recursive func-
tion and the weak truth-table degree of A does not contain a hyperimmune set?

Finally, we present a sort of downwards density theorem. Downey, Griffiths and
LaForte [3] showed that there is an r.e. Turing degree which does not contain a Schnorr
trivial set. The next proof shows that, nevertheless, every nonrecursive r.e. set bounds
a nonrecursive Schnorr trivial set.

Theorem 5.7. Let A be r.e. and nonrecursive. Then there is an r.e. nonrecursive
set B ≤bwtt A that is Schnorr trivial and nonrecursive.

Proof. Since A is not recursive, there is a high r.e. set C such that A 6≤T C [20].
Without loss of generality, we can choose C to be dense simple and co-retraceable via
a total function, so there is a recursive function h such that h(x) = |{y < x : y /∈ C}|
for all x /∈ C. Let a0, a1, a2, . . . be a recursive injective enumeration of A and let
c0, c1, c2, . . . be a recursive injective enumeration of C. Now let

bn = min{x : h(x) = an ∧ x /∈ {c0, c1, . . . , cn}}.
Note that each bn is defined, since there is an x /∈ C with h(x) = an for every an.
The set B = {b0, b1, b2, . . .} is recursively enumerable. Furthermore, we can see that
B ≤bwtt A as follows. Given any x, if h(x) /∈ A, then x /∈ B. If h(x) ∈ A, then let n
be the unique number such that x = an, so we will have x ∈ B if and only if x = bn
for this n.

The restriction of the characteristic function of B to C is a partial recursive func-
tion ψ. Given any x ∈ C, we can find the first n such that x = cn and then let
ψ(x) = 1 if and only if there is an m < n such that bm = x. As C is dense simple, it
follows from Remark 3.3 that B is Schnorr trivial.

Furthermore, we can see that A ≤T B ⊕ C as follows. If we use C as an oracle,
then given any x, we can find the least y such that h(y) = x and h(y) /∈ C. Therefore,
x ∈ A if and only if there is a z ≤ y such that h(z) = x and z ∈ B. Since A 6≤T C,
we can see that B 6≤T C, so B cannot be recursive.

Franklin [8] showed that if A is a nonhigh 1-generic set, there is no nonrecursive
Schnorr trivial set B ≤T A. As there are 1-generic sets below K and these sets
are not high, we can see that Theorem 5.7 cannot be improved to show that every
nonrecursive A ≤T K bounds a nonrecursive Schnorr trivial set.

6 Reductions to Schnorr Random Sets

It is natural to ask whether there is a parallel to Hirschfeldt and Nies’s characterization
of the sets that are low for Martin-Löf randomness as those sets that are bases for
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Martin-Löf randomness. While we show that there is no such equivalence for Schnorr
randomness, there is a promising initial proposition.

Proposition 6.1. Let A and B be sets such that A ≤tt B and B is truth-table Schnorr
random relative to A. Then A is Schnorr trivial.

Proof. Let A and B be as above and let h(n) = 4n. Define u to be the use function
of the truth-table reduction from A to B and r(n) to be the number of strings in
{0, 1}u(n)+1 that truth-table compute A�n via the given reduction. Furthermore, let
f be an arbitrary recursive, strictly increasing function.

For each n, we define the martingale dn to have the initial value 2−n, increase
on any string of length u(f(n)) + 1 computing A � f(n) via the given truth-table
reduction up to the value 2u(f(n))+1−n/r(f(n)) and have the value 0 otherwise. For
all σ ∈ {0, 1}u(f(n))+1 and all τ ∈ {0, 1}∗, let dn(σaτ) = dn(σ). This leaves two
possibilities.

First, we consider the possibility that dn(B�u(f(n))) > 2n for infinitely many n.
If this were to happen, then B could not be Schnorr random relative to A because
the sum

∑
n dn would be an A-recursive martingale that succeeds on B. Since B is

truth-table Schnorr random relative to A, this would give us a contradiction.
Therefore, dn(B�u(f(n))) ≤ 2n for almost all n. It follows that r(n) ≥ 2u(n)+1−4n

for almost all n. Given n, we can produce the list of strings σ ∈ {0, 1}f(n)+1 for
which there are at least 2u(n)+1−4n strings τ ∈ {0, 1}u(f(n))+1 such that the truth-table
reduction from A to B translates τ into σ. There will be no more than 4n such strings,
and for almost all n, this list will contain A�f(n). Therefore, by Remark 3.3, A must
be Schnorr trivial.

However, we can generalize Calude and Nies’s result [2] that the halting problem is
not truth-table reducible to any Martin-Löf random set to the context of a dense
simple (and thus Schnorr trivial) set and Schnorr randomness.

Theorem 6.2. There is a partial recursive {0, 1}-valued function ψ whose domain is
dense simple such that no set whose characteristic function extends ψ is truth-table
reducible to any Schnorr random set.

Proof. In this proof, we will define intervals Im of length 2m + 1 that might move
from time to time after they are initially defined. Each time an interval moves,
the characteristic function ψ is defined on the previous values of Im and no other
interval will ever contain these values again. We use a priority construction with a
bookkeeping set R of pairs 〈e,m〉 for requirements that have already been satisfied.
At the beginning, all intervals are undefined and R is initialized as the empty set.

Construction. At stage s, we first determine the least m such that Im requires
attention as defined below.
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1. Im requires attention if the interval Im,s is undefined at the current stage.

2. Im requires attention with respect to ϕe(x) if Im,s is defined, ϕe,s(x) is defined,
e, x ≤ (m+ 1)2 and min(Im,s) ≤ ϕe(x).

3. Im requires attention with respect to the eth candidate for a tt-reduction if Im,s
exists, this candidate is defined for all elements of Im,s within s steps and 〈e,m〉
is not yet in R.

Note that there is always some interval Im that requires attention at stage s. Let m
be the minimal index of such an interval and let y be the first number which is not
in a defined interval Ik,s or in the domain of ψs.

If Im requires attention because Im,s is undefined, then we define it by letting
Im,s+1 = {y, y + 1, y + 2, . . . , y + 2m}. If Im requires attention with respect to ϕe(x),
then we define ψs+1(x) = 0 for all x ∈ Im and let Im,s+1 = {y, y+1, y+2, . . . , y+2m}.
Finally, if Im requires attention with respect to the eth candidate for a truth-table
reduction, then we consider all possible σ ∈ {0, 1}2m+1 and select the one for which
the eth candidate has the smallest quantity of inverse images producing it. In this
case, we define ψs+1 according to σ on Im,s, let Im,s+1 = {y, y + 1, y + 2, . . . , y + 2m}
and put 〈e,m〉 into R.

Verification. It is easy to see that every interval Im requires attention only finitely
often. Therefore, each Im has a final value Im,∞ and the domain of ψ is exactly the
complement of the union of all intervals Im,∞. It is easy to see that ψ is partial
recursive.

Assume now that the eth candidate is a truth-table reduction. Each Im will receive
attention with respect to the eth candidate at some stage and we let u(m) be its use.
The values of ψ on Im,s are such that at most 2u(m)−2m out of the 2u(m)+1 strings
of length u(m) + 1 are mapped by the eth candidate to a string that extends ψ on
Im,s, and we can find these strings effectively. Therefore, a martingale

∑
m dm can be

constructed such that for each m, dm has 2−m−1 as its initial value and reaches the
value 2m after querying u(m) + 1 bits if the bits queried produce a string consistent
with ψ on Im,s. The term dm in the sum of the martingale will be constant after
querying the first u(m) + 1 bits. It is easy to see that

∑
m dm witnesses the statement

that no extension of ψ is truth-table reducible to a Schnorr random set via the eth

candidate for a truth-table reduction.
Now we show that the domain of ψ is dense simple. Note that the complement

of the domain of ψ is given by the union ∪mIm,∞. Let e be an index for which ϕe
is total and let x ≥ e2. Any interval Im with (m + 1)2 ≥ x requires attention with
respect to ϕe(x) whenever min(Im,s) ≤ ϕe,s(x) and the right-hand side is defined, so
min(Im,∞) > ϕe(x). Only the intervals Im,∞ with (m+ 1)2 < x can contain elements
below ϕe(x) and these intervals have at most x elements combined. For example, if
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e = 2 and x = (2 + 1)2 + 1 then only the intervals I0,∞, I1,∞ and I2,∞ can contain
elements below ϕe(x) and these intervals have at most 1, 3 and 5 elements, respectively.
Therefore, there are at most 9 elements of the complement of the domain of ψ below
ϕe(x) for x = 10, and we can see that the domain of ψ must be dense simple.

In fact, every set whose characteristic function extends the function ψ constructed in
Theorem 6.2 is Schnorr trivial since the domain of ψ is dense simple. Furthermore,
ψ has a total extension A that is hyperimmune-free. Therefore, truth-table Schnorr
randomness relative to A coincides with Turing Schnorr randomness relative to A, and
the statements in Proposition 2.1 coincide. This indicates that the negative result of
Theorem 6.2 does not depend on the particular version of truth-table Schnorr ran-
domness relative to A and shows that it is not possible to extend the characterization
to what might be called a truth-table basis for Schnorr randomness.

Now we present a counterpart to Theorem 6.2.

Theorem 6.3. There is a dense simple set A that is Schnorr trivial and truth-table
reducible to a Schnorr random set.

Proof. Without loss of generality, assume that ϕ0(n) = 0 for all n. Now we can define
a recursive injective function f such that the range of f is {〈e, n〉 : e < n ∧ ϕe(n) ↓}
and if f(x) = 〈e, n〉, then ϕe(n) ≤ x.

We will use the fact that ϕ0 is always 0 to define f(x) = 〈0, n〉 for n whenever no
other value can be found. Now let g(x) be the second component of f(x); that is, if
f(x) = 〈e, n〉, then g(x) = n. Let

A = {x : ∃y > x [g(y) = g(x)]}.

The set A is clearly recursively enumerable. Furthermore, A is dense simple, since for
every total function ϕe and every n > e, if f(x) = n and x /∈ A, then x ≥ ϕe(n).

Now let I0, I1, I2, . . . be a recursive partition of N into intervals such that |Im| =
g(m) for all m, and let d be a universal martingale that succeeds on all sets that are
not Martin-Löf random. Note that d is approximable from below but not recursive,
since its initial value is a left-r.e. real between 0 and 1.

We define a set R inductively as follows. On an interval Im with m ∈ A, we choose
R such that d grows by at most a factor 1/(1 − 2−m) and is not 0 on all elements
of Im. No element of an interval Im with m /∈ A is put into R, and d can grow by
a factor of 2m on this interval. It is clear that A ≤tt R, since m ∈ A if and only if
Im ∩R 6= ∅.

Assume now for a contradiction that R is not Schnorr random. Let r be the factor
by which d can grow on intervals Im with m ∈ A; that is,

r =
∏
m>0

(1− 2−m)−m.
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Note that this product is convergent. As R is assumed not to be Schnorr random,
there is a recursive function h such that d(R�h(n)) > n for infinitely many n. Choose
an e such that ϕe(m) = h(0) + h(1) + . . . + h(dr · 2(m+1)(m+2)e) + m for all m. By
construction there are, for m > e, only m intervals In such that In∩R = ∅ below ϕe(m)
and these intervals have lengths 1, 2, 3, . . . ,m, respectively. On these m intervals, d
may increase its value by a factor of 2m(m+1). Outside the intervals In such that
In ∩ R = ∅, the value of d grows by at most a factor of r. As a consequence, for all
m > e and all k with r · 2m(m+1) < k ≤ r · 2(m+1)(m+2),

d(R�h(k)) ≤ r · 2m(m+1) < k.

Therefore, the assumption that d reaches the value k after the first h(k) + 1 bits for
infinitely many k is false, so R is Schnorr random and A is truth-table reducible to a
Schnorr random set.

This leads us to the following question.

Question 6.4. Do the Schnorr trivial sets that are truth-table reducible to Schnorr
random sets form a truth-table ideal? In other words, if A and B are both Schnorr
trivial sets that are truth-table reducible to a Schnorr random set, is the same true for
A⊕B?

One might try to prove a similar statement by considering alternative reducibilities; in
particular, those for which the Schnorr trivial sets form the least degree. For instance,
we could consider the following reducibility as well as the ≤Sch considered by Downey,
Griffiths and LaForte [3].

Definition 6.5. We say that A ≤snr B if and only if

∃ recursive h∀f ≤tt A ∃g ≤tt B ∀n∃m ≤ h(n) [f(n) = g(m)].

We can see by Theorem 3.2 (2.) that A ≤snr ∅ if and only if A is Schnorr trivial. This
result can now be extended to obtain a theorem similar to those involving bases for
randomness, although the reducibility is not a commonly accepted one. Note that for
every fixed set B, the class {A : A ≤snr B} is a truth-table ideal.

Theorem 6.6. A set A is Schnorr trivial if and only if there is a set B such that B
is truth-table Schnorr random relative to A and A ≤snr B.

Proof. If A is Schnorr trivial, then A is snr-reducible to every set, so we need only
prove the other direction. Assume that A ≤snr B and that B is truth-table Schnorr
random relative to A. We will show that A is Schnorr trivial by arguments adapted
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from the proof of Proposition 6.1.
Let the recursive bound h from the snr-reduction be given and let f be a strictly

increasing recursive function. We will list 4n · h(n) strings that will include A�f(n)
for every n.

Let u be the use function for the truth-table reduction that computes up to h(n)
strings, including A�f(n), for any given n, and let r(n) be the number of strings of
length u(n)+1 such that A�f(n) is among the h(n) candidates produced by the given
truth-table reduction.

For each n, consider the martingale dn that has 2−n as its initial value and reaches
the value 2u(n)+1−n/r(n) on any string σ ∈ {0, 1}u(n)+1 that produces h(n) candidates,
including A�f(n), via the given truth-table reduction. For all σ ∈ {0, 1}u(n)+1, if
τ ⊃ σ, we let dn(τ) = dn(σ).

First, we consider the possibility that dn(B�u(n)) > 2n for infinitely many n. Then
B cannot be Schnorr random relative to A, since the sum

∑
n dn is an A-recursive

martingale that succeeds on B. As B is Schnorr random relative to A, this cannot
occur.

Therefore, dn(B �u(n)) ≤ 2n for almost all n. It follows that r(n) ≥ 2u(n)+1−4n

for almost all n. For each n, we produce the list of all σ ∈ {0, 1}f(n)+1 such that
there are at least 2u(n)+1−4n strings τ ∈ {0, 1}u(n)+1 for which σ is among the h(n)
candidates which the truth-table reduction produces for A�f(n) from τ . The list of
such σ contains at most 4n · h(n) members and, for almost all n, the correct string
A�f(n) will be found in the list. By Remark 3.3, A must be Schnorr trivial.
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