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Abstract. The weakly random reals contain not only the Schnorr random reals as a subclass but
also the weakly 1-generic reals and therefore the n-generic reals for every n. While the class of
Schnorr random reals does not overlap with any of these classes of generic reals, their degrees may.
In this paper, we describe the extent to which this is possible for the Turing, weak truth-table, and
truth-table degrees and then extend our analysis to the Schnorr random and hyperimmune reals.

1. Introduction

Randomness and genericity are somehow similar concepts. A real that is random is, in some
sense, large with respect to measure, and a real that is generic may be considered to be large
with respect to category. The degree to which random reals and generic reals may be related is,
therefore, of interest. Given a very weak notion of randomness, a real may be both random and
generic, but for any reasonably strong definition of randomness, this is not the case.

Weak randomness, developed by Kurtz in his thesis [11] and therefore also called Kurtz random-
ness, is the weakest of all the commonly discussed randomness notions. Not only are all the reals
that are Schnorr random weakly random, but so are all the reals that are weakly 1-generic. This
implies that for every n, all the reals that are n-random or n-generic are weakly random. However,
the n-random reals and the m-generic reals do not overlap for any n and m.

In this paper, we study the relationships between the degrees of these subclasses of the weakly
random reals. The first part of the paper consists of an analysis of the relationship between the
degrees of random reals and the degrees of generic reals. In the second part of this paper, we
generalize the genericity condition to that of hyperimmunity and consider the relationship between
the degrees of random reals and hyperimmune reals.

1.1. Background. Our notation generally follows that of Soare [17] and Odifreddi [14, 15]. We
work within the Cantor space, denoted by 2ω, and we call its elements reals. We will use µ to
denote the Lebesgue measure on 2ω throughout. For a finite binary string σ and a finite or infinite
binary string C, we write σ ⊆ C to indicate that σ is an initial segment of C. Although it may be
more typical to denote this relationship by �, we will use this notation in Section 2 to indicate the
ordering we place on a set of forcing conditions instead, as is standard in set theory. Furthermore,
for a finite binary string σ, we let [σ] denote the class of reals extending σ: {A | σ ⊆ A}.

The original definition of weak randomness is unlike the standard definition of most other ran-
domness notions. Generally, a real is considered to be random if it avoids all null sets defined
in some particular effective way. Kurtz proposed in his thesis that a real could be considered to
be random if, instead of avoiding every null set, it is contained in every effectively defined set of
measure 1 [11].
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Definition 1.1. [11] A real A is weakly random if A ∈ U for every Σ0
1 set U ⊆ 2ω of measure 1.

Wang proved that this class of reals can also be defined in the same way that Schnorr and
Martin-Löf randomness typically are; e.g., in terms of tests.

Definition 1.2. [19] A Kurtz null test is a sequence 〈Vn〉n∈ω of open subsets of the Cantor space
such that for every n, µ(Vn) ≤ 1

2n and Vn =
⋃
σ∈f(n)[σ] for a given recursive function f : ω →

(2<ω)<ω.

Theorem 1.3. [19] A real A is weakly random if and only if for every Kurtz null test 〈Vn〉n∈ω,
A 6∈

⋂
n∈ω Vn.

We now describe two stronger notions of randomness: Martin-Löf randomness and Schnorr
randomness. For Martin-Löf randomness, we increase the class of tests whose null sets every
random real must avoid by allowing each Vn to be determined by an infinite r.e. set instead of a
finite set. When we consider Schnorr randomness, we use Martin-Löf tests that are restricted with
respect to measure.

Definition 1.4. [12] A Martin-Löf test is a sequence 〈Vn〉n∈ω of open subsets of the Cantor space
such that for every n, µ(Vn) ≤ 1

2n for every n and Vn = [Wf(n)] for a given recursive function f . A
real A is said to be Martin-Löf random if for every Martin-Löf test 〈Vn〉n∈ω, A 6∈

⋂
n∈ω Vn.

Definition 1.5. [16] A Martin-Löf test 〈Vn〉n∈ω is said to be a Schnorr test if for every n, µ(Vn) =
1
2n . A real A is said to be Schnorr random if for every Schnorr test 〈Vn〉n∈ω, A 6∈

⋂
n∈ω Vn.

It is clear that every Martin-Löf random real is Schnorr random. It can also be shown that every
Schnorr random real is weakly random. The proof of this result involves the characterizations
of these randomness notions based on unpredictability. We use martingales to formalize these
characterizations. Recall that a martingale d is simply a function from 2<ω to R≥0 such that for
every string σ, d(σ) = d(σ0)+d(σ1)

2 , and that a martingale d is r.e. (recursive) if the values d(σ) are
uniformly r.e. (recursive) reals.

Theorem 1.6. [16, 19] Suppose A is a real.
(1) A is Schnorr random if there is no recursive martingale d such that d(A�n) ≥ h(n) for

infinitely many n for some unbounded, nondecreasing recursive function h.
(2) A is weakly random if there is no recursive martingale d and no unbounded, nondecreasing

recursive function h such that for some n, d(A�n) ≤ h(n).

It is clear from this theorem that every Schnorr random real (and thus every Martin-Löf random
real) is weakly random.

Finally, we mention a form of randomness strictly intermediate between Martin-Löf randomness
and Schnorr randomness: recursive randomness. It is most naturally characterized in terms of
martingales.

Definition 1.7. [16] A real A is recursively random if there is no recursive martingale d that
succeeds on A; i.e., such that lim supn d(A�n) =∞.

We now note that although weak randomness is primarily considered a randomness notion, it
would not be inappropriate to consider it as a genericity notion since every weakly random real
meets every sufficiently large Σ0

1 set. When we discuss genericity, we will use the formulations in
[11].
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Definition 1.8. A real G forces a statement ϕ if there is some initial segment σ of G such that ϕ
is true of all extensions of σ.

A set S ⊆ 2<ω is said to be dense if for every σ ∈ 2<ω, there is some τ ∈ S such that σ ⊆ τ .

Definition 1.9. A real G is n-generic if for every Σ0
n sentence ϕ, either G forces ϕ or G forces ¬ϕ,

and a real G is weakly n-generic if for every dense Σ0
n set S, there is some σ ∈ S such that σ ⊂ G.

It can be seen from this definition that every real that is weakly 1-generic is also weakly random.
Furthermore, every n-generic real is weakly n-generic, and every weakly (n + 1)-generic real is
n-generic [11].

We will also consider hyperimmunity, a more general notion than genericity.

Definition 1.10. A real A is hyperimmune if A is infinite and no recursive function dominates pA,
the function that lists those n such that A(n) = 1 in increasing order.

1.2. Previous work. We first note that no real can be both Schnorr random and weakly 1-generic
[2]. To see this, we construct a dense r.e. set of strings S = ∪iSi such that 〈[Si]〉i∈ω is a nested
Schnorr test and any weakly 1-generic real must be contained in [Si] for infinitely many i. Any
weakly 1-generic real will be an element of the intersection of the [Si]s, so it cannot be Schnorr
random.

Quite a lot of work has been done on the relationship between randomness and genericity.
Demuth and Kučera proved in [1] that no 1-generic real Turing computes a Martin-Löf random
real. This implies that no 2-generic real computes a 2-random real. In [13], Nies, Stephan, and
Terwijn proved that, in fact, any 2-generic real and any 2-random real form a minimal pair and
noted that this result cannot be improved. Since every real is weak truth-table computed by a
Martin-Löf random real [9, 5], no 2-generic real can form a minimal pair with every Martin-Löf
random real. Furthermore, every 2-random real Turing computes a 1-generic real [7].

Every weakly 1-generic real is hyperimmune [11], but not every weakly random real is, since
there are weakly random reals that are hyperimmune-free [13]. Therefore, we may also consider
the relationship between the Schnorr random reals and the weakly random hyperimmune reals.

2. Genericity and Schnorr randomness

It is clearly possible for a Schnorr random real and a 1-generic real to share a Turing degree:
each high Turing degree contains a Schnorr random real [13], and there is a high 1-generic real.
However, we can see that this highness condition is necessary and that, in fact, a nonhigh 1-generic
real cannot even compute a Schnorr random real.

Theorem 2.1. If a 1-generic real is not high, it cannot Turing compute a Schnorr random real.

Proof. Let G be a 1-generic real that is not high, and suppose that it computes a Schnorr random
real A. Since A is not high, it must be Martin-Löf random [13]. Every Martin-Löf random real is
fixed-point free (FPF) [10], and the Turing degrees with FPF reals are closed upwards. Therefore,
the Turing degree of G must be FPF as well, and since fixed-point freeness is degree invariant, G
must be FPF as well. However, no 1-generic degree can be FPF [1], so we have a contradiction. �

Since every 2-generic real is 1-generic and no 2-generic real is high, no 2-generic real Turing
computes a Schnorr random real. We present a direct argument here that is similar to those in [4].
The interested reader may wish to compare the proof that Cohen forcing does not add a random
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real, which can be seen as an immediate corollary to Solovay’s characterization of random reals in
[18].

In this proof, we will make use of the machine characterization of Schnorr randomness, originally
given by Downey and Griffiths [3]. We may consider a Turing machine M to be a partial recursive
function from 2<ω to 2<ω. A Turing machine is said to be prefix-free if there are no σ and τ
in its domain such that σ extends τ . Finally, a Turing machine is said to be computable if the
Lebesgue measure of its domain is a recursive real; i.e., effectively approximable from above as well
as from below. The Kolmogorov complexity of a finite binary string σ with respect to a particular
prefix-free Turing machine M is defined to be KM (σ) = min{|τ | | KM (τ) = σ}.

Theorem 2.2. [3] A real A is Schnorr random if for every prefix-free computable Turing machine
M ,

(∃c ∈ ω)(∀n ∈ ω)[KM (A�n) ≥ n− c].

We will also need to make use of the Kraft-Chaitin Theorem.

Theorem 2.3 (Kraft-Chaitin Theorem). Let 〈di, σi〉i∈ω be a recursive sequence with di ∈ ω and
σi ∈ 2<ω for all i such that

∑
i

1
2di
≤ 1. (Such a sequence is called a Kraft-Chaitin set, and each

element of the sequence is called a Kraft-Chaitin axiom.) Then there are strings τi and a prefix-free
machine M such that dom(M) = {τi | i ∈ ω} and for all i and j in ω,

(1) if i 6= j, then τi 6= τj,
(2) |τi| = di,
(3) and M(τi) = σi.

This theorem allows us to construct a prefix-free machine by specifying only the lengths of the
strings in the domain rather than the actual strings. This allows us to identify 〈τ, σ〉 with 〈d, σ〉,
where d = |τ |, throughout.

Theorem 2.4. Suppose G is 2-generic and A ≤T G. Then A cannot be Schnorr random.

Proof. Let G be 2-generic, and let Ψ be a Turing function witnessing A ≤T G. Given an oracle X,
the statement that ΨX is total can be written as follows.

ϕX = (∀n ∈ ω)(∃s ∈ ω)[ΨX
s (n) ↓]

Since ϕX is a Π0,X
2 statement, G must either force ϕG to be true or force it to be false. Since

A ≤T G, G cannot force it to be false, so G must force its truth. Call the initial segment that
does so p. Our forcing conditions will be the set P = {q ∈ 2<ω | q ⊇ p}, which we can recursively
enumerate as 〈qi〉i∈ω. We follow the standard convention of ordering P by writing qi � qj when
qi ⊇ qj .

We may now consider the set T = {ri | ri = Ψqi}. Note that there may be some i and j for
which ri = rj . Since p forces the totality of Ψ, for every element ri of T , there will be some rj in
T extending ri. Therefore, we can think of the elements of T as an infinite r.e. binary tree, and A
will be one of the paths through T . To prove that A is not Schnorr random, we will show that we
cannot force A to be Schnorr random.

To do this, we will build a computable Turing machine M such that for each constant c and each
ri, there is an extension pi of ri such that KM (pi) < n− c. This will guarantee that for each pair c
and i, we cannot force KM (pi) ≥ n− c; that is, we will never be able to force Schnorr randomness
above any ri in our tree. To this end, we let 〈·, ·〉 be a recursive bijection from ω × ω to ω − {0}.
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Our construction proceeds in stages. At stage 0, we set M = ∅. At stage 〈c, i〉, we choose n ∈ ω
such that n is larger than all such n used at previous stages and such that 〈c, i〉 < n − c. We
enumerate the elements of T until we find some rj ⊇ ri such that |rj | ≥ n and then enumerate the
Kraft-Chaitin axiom 〈〈c, i〉, rj�n〉 into M .

At each stage s > 0, we added 1
2s to the measure of dom(M), so µ(dom(M)) =

∑
s>0

1
2s = 1.

Therefore, we can apply the Kraft-Chaitin Theorem, and we can clearly think of M as not just a
prefix-free Turing machine but a computable one.

All that remains to be shown is that A cannot be Schnorr random. To show that M witnesses
that A is not Schnorr random, we consider the following statement in a real X and a constant c.

ψX(c) = (∃n ∈ ω)(∃s ∈ ω)[KMs(ΨX�n) < n− c]

Since this is a Σ0,X
1 statement in c and G is 2-generic, G must either force ψG(c) or its negation for

every constant c. We have constructed our machine M so that for every ri and c, some extension
of ri has a complexity less than its length minus c. Since every initial segment of G is extended by
some ri, G must force the truth of this statement for every c, and ΨG = A must therefore not be
Schnorr random. �

We observe that we only use the full strength of the genericity of G when we force the totality
of Ψ. When we force nonrandomness, we use only a Σ1 statement and not a Π2 statement. If we
consider only truth-table functionals, we do not have to force the statement that Ψ is total. This
allows us to weaken our assumptions about the generic and let it be simply 1-generic instead of
2-generic, giving us the following theorem.

Theorem 2.5. Suppose G is 1-generic and A ≤tt G. Then A cannot be Schnorr random.

We may also ask if we can weaken the reducibility in Theorem 2.5 to weak truth-table reducibility.
This turns out not to be possible. In particular, we show that this is impossible if we add an
additional assumption concerning the degree of the 1-generic real; namely, the assumption that the
real is high. However, if we make this assumption, it enables us to consider a weaker property than
1-genericity, resulting in an entirely different sort of proof. In particular, we assume that the real
is GL1 instead of 1-generic. Recall that a real B is GL1 if and only if B′ ≡T B ⊕ 0′.

Theorem 2.6. Suppose G is high and GL1. Then there is a recursively random (and thus Schnorr
random) real A such that A ≡wtt G.

Since every real that is 1-generic is GL1 [6], this will give us the following corollary immediately.

Corollary 2.7. Suppose G is 1-generic and high. Then there is a recursively random (and thus
Schnorr random) real A such that A ≡wtt G.

Proof of Theorem 2.6. Since G is high, we know that G′ ≡T 0′′, and, since G is GL1, we know
that G′ ≡T G ⊕ 0′. This means that 0′′ ≡T G ⊕ 0′, so G ⊕ 0′ can determine whether a given r.e.
martingale d is total. We will begin by creating a list recursively in G that will allow us to build a
list of total martingales to use in our proof. While some martingales may be repeated, every total
martingale will appear in the list at some point. To do this, we fix an enumeration 〈de〉e∈ω of all
r.e. martingales and let Φ be a Turing functional such that ΦG⊕0′

(e) equals 1 if de is total and 0
if it is not, and we fix an enumeration 〈0′s〉s∈ω of 0′. Without loss of generality, we assume that d0

is the martingale such that d0(σ) = 1 for every σ ∈ 2<ω; that is, the martingale that does not bet
on anything, and we further assume that Φ does not consult the oracle at all when it determines
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whether d0 is total. We use this to construct a list of elements of ω × ω × ω that we will use to
identify a collection of total r.e. martingales that contains every total r.e. martingale. The first
element of the triple will be the index e of an r.e., possibly total, martingale, the second will be
the stage s at which the calculation of ΨG⊕0′

s
s (e) indicates that we should add e to the list, and the

third will be the use u of the approximation 0′s in this calculation.
At stage 0, we add the triple (0, 0, 0) to the list. If s > 0, we consider all e ≤ s. If ΨG⊕0′

s
s (e) = 1

and the use of the 0′s component is u, we add the triple (e, s, u) to the list. Whenever necessary,
we will add the triple (0, 0, 0) to the list to ensure that the kth entry in the list (ek, sk, uk) can be
determined using only G�k and that ek < k for every k > 0. This will ensure that our list is not
only Turing computable from G but also wtt-computable from G. We may assume without loss of
generality that each martingale dek

assumes only nonnegative rational values.
It should be observed at this point that even if (e, s, u) is on our list, the martingale de may not

actually be total. It is possible that after the stage s at which we added (e, s, u), the approximation
to 0′ changed. If, for some t > s, 0′t�u 6= 0′s�u, the computation ΨG⊕0′

t(e) may not terminate in t
steps or, if it does, it may even yield an answer of 0. Therefore, we will consider the approximation
0′s at stage s in our computations below. If we are using de in our calculations because (e, s, u)
is on our list and we find that 0′t �u 6= 0′s �u for some t > s, we will stop calculating additional
values for de at this point. Instead, we will use the values we have calculated up to this point
and treat de as a nonbetting martingale when we need any more of its values for a computation
to ensure that we are using a total martingale. Of course, if de is a total martingale, (e, s, u) will
be on our list for some s and u for which 0′s�u = 0′�u and 0′t�u = 0′s�u for all t ≥ s. After stage
s, we will never find any evidence that de may not be total, so this entry in our list will result
in de being used in our computation in its entirety. Therefore, our list of triples 〈(ek, sk, uk)〉k∈ω
that is wtt-computable from G will allow us to develop a list of recursive martingales based on the
sequence of r.e. martingles 〈dek

〉k∈ω that we will use throughout the proof, and this list will still be
wtt-computable from G. We will still refer to the kth element of this sequence as dek

for the sake
of simplicity, although the recursive martingale in question may only be based on the actual dek

and become nonbetting at some point.
We will also alter the martingales dek

slightly in another way. We choose a G-recursive partition
〈Ik〉k∈ω of ω such that for every k, max(Ik) > k and there are 2(k + 2) strings on Ik such that the
first k martingales in our list grow by a factor of no more than 1 + 1

2k on each of them. Note that,
in fact, the sequence 〈Ik〉k∈ω is weak truth-table computable from G. For each k, this allows us to
define a new martingale mek

based on dek
such that the following conditions hold.

(1) For all σ of length < max(Ik), mek
(σ) = 1.

(2) For all σ of length max(Ik) and all τ , mek
(στ) = 1+dek

(στ)

1+dek
(σ) .

It is clear that if dek
succeeds on a real, so will mek

. Now we define a new martingale that is a
weighted sum of the mek

s: for each σ in Ik, m(σ) = 1
2k

∑
i<k

1
2i+1mei(σ). Observe that m is a

rational-valued martingale, since only finitely many of the mek
s are used to determine the value

of m(σ) for any given σ. It is also clear that m ≤wtt G since all of the mek
s and Iks are weak

truth-table computable from G. Furthermore, if any mek
succeeds on a real, so will m.

Now we use m to construct our real A by finite extensions. For each k, we define A on Ik
as follows. We chose Ik so that there are at least 2(k + 2) strings in this interval on which no
martingale mei such that i < k grows by a factor larger than 1+ 1

2k . We have chosen these intervals
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to be sufficiently long that we can use A�max(Ik−1) to find the values m assumes on Ik, so we can
identify these strings from A�max(Ik−1). Then we choose the leftmost 2(k + 2) such strings, order
them lexicographically, and define A on Ik to be the string that is (G(k)(k + 2) + ek+1)st in this
set. This will not only allow us to compute G(k) from A, it will let us determine the values of m
on the next interval, Ik+1.

We first show that G ≡wtt A. We have computed A from G by partitioning ω into intervals
Ik and using G(k), the values of mei for i < k, and an index ek+1 < k to determine the values
of A on Ik. Each of these computations is weak truth-table in G, so we can see that A ≤wtt G.
Furthermore, we can compute G(k) from A�max(Ik), and since G�k allows us to determine Ik+1,
we know that G ≤wtt A.

Finally, since the value of m increases by no more than a factor of 1 + 1
2k on the interval Ik,

the values of m on A will be bounded by
∏
k(1 + 1

2k ), which is convergent. Therefore, none
of the martingales mek

succeed on A, and A must be recursively random and therefore Schnorr
random. �

In this proof, we have used the highness of A and the fact that G is GL1 to build a martingale
that, while not a recursive martingale itself, covers all recursive martingales. This has allowed us
to prove a stronger statement than desired: not only can we find a Schnorr random real that is
weak truth-table equivalent to our G, we can find a recursively random real with this property.

We may also ask if we can strengthen the genericity condition in the previous corollary to weak
2-genericity. This turns out to be possible if the weakly 2-generic real is high. However, since no
2-generic real is high, we must first prove that such a real exists.

Theorem 2.8. There is a high weakly 2-generic real.

Proof. Here, we treat partial recursive functions as functions from 2<ω to 2<ω rather than ω to ω.
Let an extension function be a partial recursive function ϕ such that for every σ, ϕ(σ) extends σ,
and define E to be the set of all indices of total extension functions that are recursive in 0′.

We define our real G by finite extensions. At stage 0, we define σ0 to be 0e01. Given σk, we
define σk+1 to be ϕ0′

ek
(σk)0ek+11. Let G = limk σk.

Since G meets every extension function that is recursive in 0′, G is weakly 2-generic. Furthermore,
since the indices 〈ek〉k∈ω can be found recursively in G and 0′, we can see that the function mapping
k to σk is recursive in G⊕ 0′. Therefore, E ≤T G⊕ 0′. We can use the s-m-n Theorem to produce
a recursive function f such that ϕ0′

f(e) is a total extension function if and only if We is infinite.
Therefore, We is infinite if and only if f(e) ∈ E, so 0′′ ≤T E. We can now see that 0′′ ≤T G ⊕ 0′,
so G must be high. �

This result makes the following corollary of Theorem 2.6 nonvacuous.

Corollary 2.9. Let G be a high weakly 2-generic real. Then there is a recursively random (and
thus Schnorr random) real A such that A ≤wtt G.

3. Hyperimmunity and Schnorr randomness

In this section and the next, we will make use of the following fact.

Fact 3.1. Let 〈Dn〉n∈ω be a list of the canonical finite sets, and suppose that f is a recursive
function from ω to ω and B is hyperimmune. Then there are infinitely many n ∈ ω such that
B ∩ {0, . . . , f(n)} = Dn ∩ {0, . . . , f(n)}.
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Theorem 3.2. Let A and B be reals. If A is not high, B is hyperimmune, and A ≤wtt B, then A
cannot be Schnorr random.

Proof. Kjos-Hanssen, Merkle, and Stephan showed that a real is complex if and only if it is not
wtt-reducible to a hyperimmune-free real in [8]. Since every Martin-Löf random real is complex
[8], A cannot be Martin-Löf random. Furthermore, since the Martin-Löf random reals and Schnorr
random reals coincide in the non-high degrees, A cannot be Schnorr random, either. �

The following corollary is immediate.

Corollary 3.3. Let A and B be reals. If B is hyperimmune and not high and A ≤wtt B, then A
cannot be Schnorr random.

We may compare this corollary to Theorems 2.1 and 2.4. In these theorems, we required that
our real be not only nonhigh and hyperimmune but at least 1-generic. However, we were able to
loosen the requirements on the reducibility and consider Turing reducibility instead of simply weak
truth-table reducibility.

We can also use Fact 3.1 to prove the following theorem. Since every 1-generic real is hyperim-
mune, this is a stronger theorem than Theorem 2.5.

Theorem 3.4. If B is hyperimmune and A ≤tt B, then A cannot be recursively random (and thus
it cannot be Schnorr random).

Proof. Suppose that Ψ is a tt-functional that computes A from B, and partition the integers into
consecutive intervals 〈In〉n∈ω such that the length of In is 2n + 1. We will produce a recursive
martingale d that witnesses the non-Schnorr randomness of A.

To build this martingale, we first define f : ω → ω to be the function that maps each integer
n to the use of the computation of the elements of In via Ψ. Since Ψ is a tt-reduction, we may
assume that f is recursive.

This martingale d will have an initial capital of 2 and allot 1
2n+1 to the interval In for each n.

To determine the behavior of d on the interval In, we consider ΨDn�f(n). On each bit m of In, we
bet everything we have remaining from our initial capital of 1

2n+1 for the interval and anything we
have earned on In by this point on the value ΨDn�f(n)(m). Since f(n) is an upper bound on the
use for Ψ, this value will always exist and can be found recursively.

By Fact 3.1, there will be infinitely many n such that B�f(n) = Dn�f(n). Therefore, there will
be infinitely many n such that d will bet correctly on every bit of A in the interval In. If In is such
an interval, d will earn 1

2n+1 · 22n+1 = 2n on In. If In is not such an interval, d will lose 1
2n+1 on In.

Since the total possible loss is bounded above by 1 and 2n will be gained for infinitely many n, the
recursive martingale d will succeed on A, so A cannot be recursively random. �
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