
SCHNORR TRIVIALITY AND GENERICITY

JOHANNA N.Y. FRANKLIN
DEPARTMENT OF MATHEMATICS

NATIONAL UNIVERSITY OF SINGAPORE

2, SCIENCE DRIVE 2
SINGAPORE 117543

Abstract. We study the connection between Schnorr triviality and genericity. We show that while no

2-generic is Turing equivalent to a Schnorr trivial and no 1-generic is tt-equivalent to a Schnorr trivial, there
is a 1-generic that is Turing equivalent to a Schnorr trivial. However, every such 1-generic must be high. As

a corollary, we prove that not all K-trivials are Schnorr trivial. We also use these techniques to extend a

previous result and show that the bases of cones of Schnorr trivial Turing degrees are precisely those whose
jumps are at least 0′′.

Contents

1. Introduction 1
2. The 2-generic case 3
3. The 1-generic case 4
4. Degrees without cones of Schnorr trivials 12
5. A further question 14
References 14

1. Introduction

In this paper, we relate algorithmic randomness to more classical recursion theory. We study a particular
class of reals that have low initial-segment complexity in the context of Schnorr randomness, the Schnorr
trivial reals. Unlike the Turing degrees that containK-trivial reals, which have low initial-segment complexity
in the context of Martin-Löf randomness, the Turing degrees that contain Schnorr trivial reals do not seem to
have a neat characterization. For instance, each Turing degree whose jump is at least 0′′ contains a Schnorr
trivial real [6], and they are not closed downward under Turing reductions [2]. This suggests that it would
be informative to consider other properties of reals and determine the extent to which they are compatible
with Schnorr triviality.

Here, we study the relationship between genericity and Schnorr triviality. We find that the two are largely
incompatible. We prove that no real can be both Schnorr trivial and 1-generic. At the level of degrees, we
show that no Schnorr trivial real is tt-equivalent to a 1-generic or Turing equivalent to a 2-generic. However,
it is possible for a Schnorr trivial real to be Turing equivalent to a 1-generic. To show that a real is K-trivial,
we only need to consider prefix-free Turing machines. On the other hand, to show that a real is Schnorr
trivial, we need to exhibit a Turing machine that is not only prefix free but computable as well. To ensure

Date: October 25, 2009.
This material comprises part of the author’s Ph.D. thesis which was written under the supervision of Theodore A. Slaman

at the University of California, Berkeley. The author acknowledges the support of NSF grant DMS-0501167 and thanks her
advisor and Leo Harrington for many insightful conversations and the editor and referees for valuable comments.

1

2 FRANKLIN

that we can produce a computable machine to witness Schnorr triviality, we must either have a stronger
reduction than Turing reducibility, a more powerful generic, or additional information about the generic in
question.

These results have two primary consequences. The technique used in the 2-generic case allows us to show
that the primary theorem in [6] is sharp; i.e., that if a′ 6≥T 0′′, a is not the base of a cone of Schnorr trivial
degrees. Secondly, since no Schnorr trivial is 1-generic, we can easily see that there are K-trivial reals that
are not Schnorr trivial.

1.1. Terminology and Definitions. Most of the notation is standard and follows Soare [13]. We will call
the elements of 2ω reals and consider Turing machines to be partial recursive functions from 2<ω to 2<ω. Any
Turing machine we consider will be prefix free; that is, its domain must be a prefix-free set. The elements of
2<ω that extend a particular τ ∈ 2<ω will be denoted as [τ], and we will define [S] similarly for any S ⊆ 2<ω.

We will use µ to denote Lesbesgue measure throughout the paper. We will often consider the measure of
the domain of a Turing machine, but never the range. Therefore, we will simply write µ(M) for µ(dom(M)).
It should be noted that if M is a prefix-free Turing machine and we list the elements of the graph of M as
〈τi, σi〉, we can see that µ(M) =

∑
i

1
2|τi|

.
As in [3], we will use K to denote prefix-free Kolmogorov complexity. In this paper, we will not consider

prefix-free Kolmogorov complexity with respect to a universal machine, but Kolmogorov complexity with
respect to some other particular Turing machine. This will make the following notation necessary.

Definition 1.1. Let M be a Turing machine, and let σ ∈ 2<ω. The prefix-free Kolmogorov complexity of σ
with respect to M is KM (σ) = min{|τ | |M(τ) = σ}.

It is clear that the measure of each Turing machine’s domain is a recursively enumerable real; i.e., ef-
fectively approximable from below. However, we will consider only the Turing machines that satisfy the
following condition.

Definition 1.2. A Turing machine M is computable if the measure of its domain is a recursive real.

Now we present the standard definition for a Schnorr random real, which is measure-theoretic.

Definition 1.3. [12] A Schnorr test is a uniformly r.e. sequence 〈Vi〉i∈ω of Σ0
1 classes such that µ(Vi) = 1

2i

for each i. A real A is Schnorr random if for all Schnorr tests 〈Vi〉i∈ω, A 6∈ ∩i∈ωVi.

However, Downey and Griffiths used the notion of a computable Turing machine to develop an initial-
segment complexity definition as well.

Theorem 1.4. [5] A real A is Schnorr random if and only if

(∀M comp.)(∃c ∈ ω)(∀n ∈ ω)[KM (A�n) ≥ n− c].

Later, Downey, Griffiths, and Laforte developed the following characterization of Schnorr triviality in [2].
They began by defining a notion of relative initial-segment complexity for Schnorr randomness.

Definition 1.5. We say that A ≤Sch B if for every computable Turing machine M , there is a computable
Turing machine M ′ and a constant c ∈ ω such that (∀n ∈ ω)[KM ′(A�n) ≤ KM (B�n) + c].

A real is said to be trivial for a particular randomness notion if its initial-segment complexity is no more
than a recursive real’s relative to that randomness notion’s definition of initial-segment complexity. This
enabled Downey, Griffiths, and Laforte to make the following definition in [2].

Definition 1.6. A real A is Schnorr trivial (A ≤Sch 0ω) if A ≤Sch 0ω; i.e., if the following statement holds.

(∀M comp.)(∃M ′ comp.)(∃c ∈ ω)(∀n ∈ ω)[KM ′(A�n) ≤ KM (0n) + c]

In the course of this paper, we will need to construct computable Turing machines. This will be simplified
by the following theorem from [1].

SCHNORR TRIVIALITY AND GENERICITY 3

Theorem 1.7 (Kraft-Chaitin Theorem). Let 〈di, σi〉i∈ω be a recursive sequence with di ∈ ω and σi ∈ 2<ω

for all i such that
∑
i

1
2di
≤ 1. (Such a sequence is called a Kraft-Chaitin set, and each element of the

sequence is called a Kraft-Chaitin axiom.) Then there are strings τi and a prefix-free machine M such that
dom(M) = {τi | i ∈ ω} and for all i and j in ω,

(1) if i 6= j, then τi 6= τj,
(2) |τi| = di,
(3) and M(τi) = σi.

The Kraft-Chaitin Theorem allows us to construct a prefix-free machine by specifying only the lengths of
the strings in the domain rather than the strings themselves. We will therefore identify 〈τ, σ〉 with 〈d, σ〉,
where d = |τ |, throughout.

2. The 2-generic case

Theorem 2.1. Suppose a contains a 2-generic real. Then a does not contain a Schnorr trivial real.

Proof. Let G ∈ a be a 2-generic real, and suppose that A is an arbitrary element of a. We will show that A
cannot be Schnorr trivial.

Since A ≡T G, there are Turing functionals Φ and Ψ such that Φ(A) = G and Ψ(G) = A. We can write
“Φ and Ψ are total, and Φ ◦Ψ is the identity function” as the following Π0

2 statement.

ϕ := (∀n ∈ ω) (∃s ∈ ω) [Φs(n)↓ ∧Ψs(n)↓] ∧ (∀n ∈ ω) (∃s ∈ ω) [(Φ ◦Ψ)s(n) = n]

Therefore, since G is 2-generic, there is an initial segment of G that forces ϕ. We call this initial segment
p and consider the set of forcing conditions P = {q ∈ 2<ω | q ⊇ p}, which we will write as 〈qi〉i∈ω. We will
order these conditions in the standard way by writing q � r if and only if q ⊆ r. Now we may define the set
T = {Ψ(q) | q � p}.

The set of initial segments of the elements of T forms a tree in 2<ω. Without loss of generality, we will
identify T with this tree. We note that this tree is perfect. If this were not the case, T would have an
isolated branch, which would necessarily be recursive. However, this is not possible, since we have forced
every branch in T to be Turing equivalent to a nonrecursive real. We also see that this tree is recursively
enumerable, since Ψ is a Turing functional and P is a recursive set of finite binary strings.

To see that A cannot be Schnorr trivial, we must construct a computable machine M such that the
following holds.

(∀Me comp.) (∀c ∈ ω) (∀q � p) (∃r � q) (∃n ∈ ω) [KMe(Ψ(r)�n) > KM (0n) + c]

If this is the case, if we are given an Me and c and a forcing condition p, no matter how we extend p, we can
find an extension r of that extension such that the Σ0

1 statement “(∃n ∈ ω) [KMe
(Ψ(r)�n) > KM (0n) + c]”

will hold. Since G is 2-generic, we can force this statement to be true, so each branch of T will be non-Schnorr
trivial with respect to each Me and c. Since A is a branch in T , this will be enough to show that A is not
Schnorr trivial.

We enumerate the pairs 〈e, c〉 such that (∃s ∈ ω)
[
µ(Me,s) ≥ 1− 1

2c

]
. If Me is a computable machine with

domain 1, 〈e, c〉 will be enumerated for all c. Since such Me exist, this list is infinite, and we can naturally
write it as 〈em, cm〉m∈ω.

We begin by considering an arbitrary pair 〈em, cm〉. As we build our machine M , we will allot 1
2m+1 of its

measure to ensure that every possible Ψ(qi), where qi ∈ P, has an extension that is not Schnorr trivial with
respect to Mem and cm.

Consider a particular element qi of P. We will dedicate 1
2i+1 of the measure that we have allotted to

〈em, cm〉 to ensuring that we can extend Ψ(qi) in such a way as to remove the possibility of forcing Schnorr
triviality with respect to Mem and the constant cm, for a total measure of 1

2(m+1)+(i+1) . Therefore, we will
add 〈(m+ 1) + (i+ 1), 0n〉 to M for some n.

4 FRANKLIN

For simplicity, we will now write 〈em, cm〉 as 〈e, c〉. We know that µ(M ′e) ≥ 1 − 1
2c , so no more than

1
2c additional measure can be assigned to µ(M ′e) after some stage s. This allows us to define the following
values.

se,c = min
{
s | µ(Me,s) ≥ 1− 1

2c

}
ne,c = max{|σ| | σ ∈Me,sc}

We have defined se,c to be the least stage s at which µ(M ′e,s) ≥ 1 − 1
2c and ne,c to be the length of the

longest string in the range of M ′e,se,c .
We find a height h such that there are at least 2(m+1)+(i+1) + 1 distinct branches of length h extending

Ψ(qi) in T . This is possible because T is a perfect tree. Now we observe that since we have more than
2(m+1)+(i+1) branches, the least measure that M ′e assigns an extension of Ψ(qi) of length at least h after
stage se,c is strictly less than 1

2(m+1)+(i+1) · 1
2c = 1

2(m+1)+(i+1)+c . Therefore, M ′e must assign at least one such
extension a complexity strictly greater than (m + 1) + (i + 1) + c. We let n be the least integer such that
the following three conditions hold.

(1) n > ne,c.
(2) n ≥ h.
(3) At this stage in the construction of M , there is no d such that 〈d, 0n〉 ∈M .

We now add 〈(m + 1) + (i + 1), 0n〉 to M . Since KM (0n) = (m + 1) + (i + 1), we can see that there is
some ri � qi such that for this n, we have the following.

KM ′e
(Ψ(ri)�n) > (m+ 1) + (i+ 1) + c = KM (0n) + c

This means that qi cannot force KM ′e
(Ψ(ri)�n) to be less than or equal to KM (0n) + c, so qi must force this

inequality to hold instead.
We construct M by repeating the above procedure for each pair 〈m, i〉 in turn. For each 〈m, i〉, a new

axiom 〈(m+ 1) + (i+ 1), 0n〉 will enter M , so we can calculate the measure of M as follows.

µ(M) =
∑
m∈ω

∑
i∈ω

1
2(m+1)+(i+1)

=
∑
m∈ω

1
2m+1

= 1,

Since this procedure is recursively enumerable and µ(M) = 1, we can see by the Kraft-Chaitin Theorem that
M is a computable Turing machine.

Since A is a branch through T , the existence of M shows that we cannot force it to be Schnorr trivial
with respect to any computable Turing machine with domain 1 and any constant. Therefore, it must not
be Schnorr trivial with respect to any computable Turing machine with domain 1 and any constant. By a
result of Downey and Griffiths [5], it is enough to consider Turing machines of domain 1 when determining
the Schnorr triviality of a real, so A cannot be Schnorr trivial. Finally, since we chose A to be an arbitrary
element in a, we can see that no element of a is Schnorr trivial.

�

3. The 1-generic case

We now turn our attention to 1-generic reals. In this case, we will consider different reducibilities. We
recall that A ≤tt B if there is a Φ such that ΦB = A and Φ is total for every oracle.

We may use the same technique as we did in the proof of Theorem 2.1 to show the following.

Theorem 3.1. Suppose that G is a 1-generic real and that A ≡tt G. Then A is not Schnorr trivial.

SCHNORR TRIVIALITY AND GENERICITY 5

Proof. Let Ψ be a tt-functional witnessing A ≤tt G. Since Ψ is a tt-functional rather than simply a Turing
functional, we are able to construct a recursively enumerable perfect tree containing Ψ(G) = A as before
such that G cannot force all of the extensions of any point in the tree to be Schnorr trivial. Therefore, A
must not be Schnorr trivial. �

This gives us the following corollary.

Corollary 3.2. No 1-generic real is Schnorr trivial.

However, this proof cannot be extended to show that there is no Schnorr trivial real in the Turing degree
of any 1-generic. In the proof of Theorem 2.1, we can use an initial segment of our 2-generic G to force the
totality of the functionals Ψ and Φ. However, 1-genericity is not sufficient for a real to force totality. At best,
a 1-generic real could force Φ ◦Ψ to be equal to the identity function at every point at which it converged.
This is not sufficient, since if the tree T is not perfect, we may not be able to repeat the procedure in the
proof of Theorem 2.1 for all 〈m, i〉 because there may not be enough branches above some qi. Therefore, the
resulting machine M may not be computable. The following theorem shows that Theorem 3.1 cannot be
generalized to Turing reducibility.

Theorem 3.3. There is a 1-generic real G and a real X ≡T G such that X is Schnorr trivial.

To see this, it is enough to note that there is a high 1-generic real, since by Theorem 9 in [6], there must
be a Schnorr trivial real in every high degree. However, we also present a direct construction that illustrates
the relationship between 1-genericity and Schnorr triviality clearly.

Proof. We will construct a 1-generic G and two Turing functionals Φ and Φ−1 such that ΦG is Schnorr trivial
and Φ−1 witnesses that G ≤T ΦG. The 1-generic G will be recursive in 0′′, and Φ and Φ−1, of course, will
both be recursively enumerable. We will construct G to be a branch of a subtree of 2<ω. Naturally, we will
have to construct machines M ′e for each e to witness the Schnorr triviality of Φ(G).

There are two different types of requirements that we will need to meet. We will need Φ(G) to be Schnorr
trivial with respect to each computable Turing machine Me with domain 1, and we will need G to meet
every dense Σ0

1 set. We will enumerate the Σ0
1 sets as 〈We〉e∈ω and express these requirements as follows.

Sche: Φ(G) is Schnorr trivial with respect to Me.
Gene: (∃σ ⊂ G) [σ ∈We or (∀τ ⊃ σ) [τ 6∈We]].
These requirements will be ordered as Sch0 < Gen0 < Sch1 < . . . < Schn < Genn < Schn+1 <
We will construct a tree T and a “companion” tree Φ(T) in stages so that every infinite branch B of T

will be 1-generic and for some such B, the corresponding branch Φ(B) of Φ(T) will be Schnorr trivial. We
will represent the finite trees at the end of stage s as Ts and Φ(Ts) as usual. Certain strings in T will be
dedicated to satisfying the requirements of the form Sche and others to satisfying the Gene requirements.

If a string σ is dedicated to satisfying requirement Sche, we will ensure that every infinite path in Φ(T)
through Φ(σ) is Schnorr trivial with respect to Me if Me is a computable Turing machine with domain
1. To do this, we will begin by ensuring that we will only extend a string in T extending σ (and thus
the corresponding element in Φ(T)) if we have new evidence that Me is computable with domain 1; i.e., if
µ(Me) ≥ 1 − 1

2c for some c greater than one we used the last time we extended σ in T . When we extend
the corresponding string Φ(σ) in Φ(T), we extend it to be long enough that we can be sure that we can
build a computable machine M ′e witnessing its Schnorr triviality. This will be enough, since when we build
a tree of Schnorr trivial reals, as in [6], the only concern is the minimum acceptable branching heights in the
tree. If we can extend this string σ infinitely often, we will have infinite branches in T and Φ(T) extending
σ and Φ(σ), respectively. If not, Me is not computable with domain 1 and there will be no infinite path in
T through σ. Therefore, we will only satisfy Sche when Me is actually computable with domain 1.

However, the requirements Sche will often interact. For instance, a string σ dedicated to satisfying Sche
may be a substring of another string τ dedicated to satisfying Sche+1. If Me is not computable with domain
1, then at some point, we will no longer extend any string extending σ. This includes τ , whether Me+1 is

6 FRANKLIN

computable or not. Therefore, even if Me is a computable machine with domain 1, it is possible that in
the course of the construction, not every string dedicated to satisfying Sche will succeed. We deal with this
problem by constructing our tree T so that not every branch contains a string dedicated to satisfying each
Sche.

Our method of satisfying the Sche requirements is illustrated in Figure 1. We label strings which are
dedicated to satisfying requirement Schi with Schi. Strings on the same level as a string labeled with Schi
that are not dedicated to satisfying Schi are labeled with ¬Schi for clarity, although no such label will be
attached in the actual construction. If the measure of a machine Me is large enough, we will branch above
strings dedicated to it; otherwise, we will not. This is illustrated by the dotted branches in the figure. For
instance, if µ(M0) < 1− 1

21 , the tree will never be extended about the string labeled with Sch0. However, the
rightmost branch of the tree will always be extended since it contains no substrings dedicated to satisfying
a requirement of the form Schi, so it is indicated by a solid line. We can see from this that if Z ⊆ ω is a set
of indices of machines with domain 1, there will be an infinite branch through T with strings dedicated to
satisfying Schi for i ∈ Z.

Figure 1. Satisfying the Sche requirements

¬Sch0Sch0

Sch1 ¬Sch1 Sch1 ¬Sch1

Sch2 ¬Sch2 Sch2 ¬Sch2 Sch2 ¬Sch2 Sch2 ¬Sch2

EEEEEEEEEEEEEEEEEE

yyyyyyyyyyyyyyyyyy

EEEEEEEE

yyyyyyyy

GGG www

We will satisfy each genericity requirement along each infinite path in T . Each time we branch in T in
an attempt to satisfy some Sche, we dedicate a string on each new branch to satisfying Geni, where i is the
least integer such that no string on that branch has previously been dedicated to satisfying Geni. If that
string is never seen to be comparable to an element of Wi, then Geni is met trivially. Otherwise, when we
find such an element of Wi, we will prune the tree to ensure that every extension of that string in T passes
through that element and thus meets Wi. This has no effect on Φ(T) except to prune it slightly. However,
it may require us to start over again with lower-priority requirements along that path through T . If every
string dedicated to a requirement of the form Sche on that branch of the tree is dedicated to a requirement
for a computable machine with domain 1, this will always be possible; otherwise, the branch will be finite
and irrelevant to our analysis of the final tree anyway.

We will label a string with me if we wish every string extending it to satisfy Sche, and we will label a
string with ge if we intend to use it to guarantee that requirement Gene is met above it. We will call a string
labeled with me a machine string, and a string that has been labeled with ge will be called a generic string.

We will also call a string σ a leaf of the finite tree Ts if no extension of it is in Ts. We will name three types
of leaves. The first type of leaf will be referred to as a machine leaf. A leaf τ of Ts will be called a machine
leaf if there is some machine string ρ ⊆ τ such that ρ extends the highest branching point in Ts below τ .
The second type of leaf will be called a generic leaf. A generic leaf τ will have some substring extending the
highest branching point in Ts below τ that has been given a label at a previous point in the construction, but
no such label will be of the form me (that is, all such labels will be of the form ge). Finally, we may, over the
course of the construction, describe some leaves as resting in order to meet a genericity requirement. Leaves
will be described this way if the labels on their substrings extending the highest branching point below them

SCHNORR TRIVIALITY AND GENERICITY 7

in Ts have been removed to meet a requirement of the form Gene. Once a leaf is described as resting, it will
not be extended in any Tt for t ≥ s unless a higher priority genericity requirement leads us to “awaken” it.
It will be clear from the construction that every nonresting leaf is either a machine leaf or a generic leaf, but
not both.

We will have, in general, several strings with the label me. However, no single computable Turing machine
M ′e will witness the Schnorr triviality of the infinite branches extending all of them. Therefore, we will build
a different Turing machine M ′e,σ for each σ with the label me.

We say that a string σ labeled with ge is active at stage s if there is some τ comparable to σ in We,s.
The condition for a string labeled with me to be active is slightly more complicated. We say that a string σ
labeled with me is active with n at stage s if the following conditions hold.

(1) σ has not yet acted with n.
(2) µ(Me) ≥ 1− 1

2n .
The construction proceeds as follows.
s = 0: We begin by taking T0 to be the downward closure of the strings 〈00〉 and 〈1〉. We attach the

label m0 to 〈0〉 and the label g0 to 〈00〉 and 〈1〉. Now we may define Φ(〈0〉) = Φ(〈00〉) = 〈0〉 and
Φ(〈1〉) = 〈1〉. Φ−1 is defined accordingly.

s > 0: We consider the requirements that are active for some σ for stage s in increasing order. After
handling each active requirement as described below for each string that is active at s for it, we will
go on to the next requirement that has not been deactivated by one with higher priority.

Case 1: Sche: We will allow the tree above a string σ labeled with me to branch when µ(Me)
becomes greater than or equal to 1 − 1

2n for some n and this is permitted by the activation of
all the other strings τ ⊂ σ labeled with some mi, where i < e. Then we will extend and branch
Φ(Ts−1) in such a way as to ensure that the branches extending Φ(σ) are Schnorr trivial with
respect to Me. We will do the following for each string labeled with me. It will be clear from
the construction that all strings labeled with me are incomparable, so our treatments of these
requirements will not interact.
Let n be the greatest number such that σ is active with n at stage s. We consider the τ ⊃ σ
that are active at stage s for a requirement of the form Sche′ and, for each such τ , we let nτ be
the greatest n such that τ has not yet acted with nτ at any stage t. This allows us to determine
which strings above σ will permit branching.
If there is ρ ⊆ σ such that ρ has a label of the form mi but is not currently active, we will
not be able to extend and branch Ts above it at this point. Therefore, we will not act for σ at
stage s. Otherwise, we consider all of the extensions of σ in Ts to see how many branches would
be necessary for us to act. We will work downward from the non-resting leaves in Ts above
σ through the branching points in Ts to determine how many leaves we will need and which
leaves will result in additional branching. We will call the number of leaves needed to satisfy
the branching requirements above a branching point τ kτ . Note that there will be a generic
string and a machine string immediately above each branching point (assuming that neither is
resting).
Suppose that τb is a branching point with no other branching points above it in [σ] ∩ Ts. We
add 0 to kτb for a resting leaf above τb, 2 for a generic leaf, 2 for a machine leaf if its machine
string is active, and 1 for a machine leaf with a nonactive machine string. This indicates that
the resting leaves are not extended at all, that the generic leaf and the active machine leaves
must branch, and that a machine leaf with a nonactive machine string must be considered but
not branched. For instance, if there is a generic leaf and an machine leaf with an active machine
string above τb, we say that kτb = 4.
For the next highest branching point τb′ , we calculate kτb′ . Suppose τ1 is the branching point
immediately above τb′ ’s machine string and τ2 is the branching point immediately above τb′ ’s

8 FRANKLIN

generic string. If τb′ ’s machine string τ is such that nτ ≥ kτ1 ; we let kτb′ = kτ1 + kτ2 because τ
is active for a large enough n to permit all the branching that we require to take place above it.
Otherwise, we say that kτb′ is the number of nonresting leaves in Ts above τ1 plus kτ2 and say
that only the leaves above τb′ ’s generic string will branch. We repeat this procedure, working
downward, for all branching points above σ. We will let k = kσ′ , where σ′ is the branching
point in Ts immediately above σ.
If n 6≥ k, more branching would be required above σ than σ authorizes. Therefore, we will not
let σ act with n and will not adjust anything in [σ]∪Ts before going on to the next requirement.
Otherwise, we extend Φ, Φ−1, M ′e,σ, and Ts. We will work with Φ and Me simultaneously to
ensure that every extension of Φ(σ) is Schnorr trivial with respect to Me. This part of the
construction is like that in [6]. We will define se,j to be the least stage s in the enumeration of
Me such that µ(Me) ≥ 1 − 1

2j for all j < n. We will refer to stages in the enumeration of Me

as Me-stages and to stages in our construction simply as stages.
Let n′ be the greatest number for which σ was previously active and for which we made adjust-
ments to Ts. For each r between n′ and n, whenever an axiom 〈d, ρ〉 enters Me between Me-
stages se,r−1 and se,r, we add 〈d+1,Φ(τ)�|ρ|〉 to M ′e,σ if |ρ| ≤ |Φ(τ)| and 〈d+1,Φ(τ)a1|ρ|−|Φ(τ)|〉
to M ′e,σ if |ρ| ≤ |Φ(τ)| for all nonresting leaves τ in Ts extending σ. If there are r′ < r such τ , we
add the same axiom r− r′ additional times for the leftmost such τ for a total of r′+ (r− r′) = r

new axioms. If Φ(τ)a1u has been added to Φ(Ts) in this process, we define Φ−1(Φ(τ)a1u) = τ .
Now, for each i and ρ such that there is a string ρ ⊇ σ labeled mi that we can branch above,
we will have to adjust M ′i,ρ. We will proceed as in the previous paragraph.
Now we create new branching points in Ts and Φ(Ts). For each leaf τ that we determined
could branch, we add τa0, τa00 and τa11 to Ts. Let ρ be the longest string extending Φ(τ)
in Φ(Ts). Now we define Φ(τa0) = Φ(τa00) = ρa0 and Φ(τa1) = ρa1. Again, we define Φ−1

accordingly.
Finally, we will label the elements above the branching points we just created. Suppose that
the highest branching point below τi in Ts is such that the machine string immediately above it
is labeled with mi′ . We will label τai 0 with mi′+1 and τai 00 and τai 1 with gi′+1. At this point,
we will say that σ has acted with n. Note that we will not act for any Schi for any τ ⊃ σ at
this stage now.

Case 2: Gene: For each σ for which Gene is active, there is a τ comparable to σ such that τ ∈We.
For each such σ, there are two subcases to consider.
In the first subcase, τ ⊆ σ. If this is so, we simply remove the label ge from σ since all extensions
of σ will automatically extend an element of We.
In the second subcase, τ ⊃ σ. If τ ∈ Ts, we choose the leftmost leaf of Ts extending τ and
call it τ ′; if not, we add τ to Ts as a leaf and refer to it from this point as τ ′. This is the
only manner in which a resting leaf can be “awakened.” We will now remove all labels from
the strings extending σ. This means that all the leaves incomparable to τ ′ that extend σ will
be resting from this point onwards unless they are awakened by another such requirement with
higher priority. If this has not been done already, we will extend our definition of Φ by setting
Φ(τ ′) = Φ(σ).
We finish the second subcase by setting Mi,ρ = 0 for all i and ρ such that ρ ⊆ σ and ρ is labeled
with mi in Ts.

We repeat this procedure for each active requirement that has not been deactivated by a previous
action in this stage. At the end of the stage, we extend τ , the rightmost leaf of Ts, as well as Φ(τ).
Clearly, by construction, τ will be a generic leaf. Suppose that the highest branching point below τ
is associated with a machine node labeled with mi. We will extend τ by 〈00〉 and 〈1〉 and label τa0

SCHNORR TRIVIALITY AND GENERICITY 9

with mi+1, τa00 with gi+1, and τa1 with gi+1. Let ρ be the longest string extending Φ(τ) in Φ(Ts).
Now we define Φ(τa0) = Φ(τa00) = ρa0 and Φ(τa1) = ρa1. Again, we define Φ−1 accordingly.

Let T = ∪s∈ωTs. We say that σ is labeled with me (ge) in T if there is a stage s such that for all t ≥ s,
σ ∈ Tt and σ is labeled with me (ge) at stage t.

Now we must verify our construction.

Lemma 3.4. If B ∈ [T] and a substring of B is labeled with me in T , then Me must be a computable Turing
machine with domain 1.

Proof. We proceed by contradiction. Suppose that B is an infinite branch of T and let σ be an initial
segment of B that is labeled with me in T for some Turing machine Me such that µ(Me) < 1. Then there
is a smallest n such that µ(Me) < 1− 1

2n . This means that σ will not act with n at any stage, so there are
at most n− 1 stages at which σ acts for me. Let s be the last such stage.

If a string τ extending σ labeled with mi for some i becomes active at a stage t > s, branching will not
result above σ since there will be a string below τ that is not active at that stage; i.e., σ itself. Alternately,
if an initial segment τ of σ labeled with mi becomes active at a stage t > s, there will be no branching above
σ since σ will not be active at stage t. Therefore, no branching will occur above σ after stage s. This has
two primary consequences: after stage s, no new labels will be assigned to strings above σ, and [σ]∩ Ts will
not be extended due to a requirement of the form Schi.

However, the elements of [σ] ∩ Ts may still be extended when we act to satisfy a requirement of the form
Geni. If τ labeled with gi is comparable with σ and acts after stage s, we may extend a leaf of Ts to meet
the set Wi. However, there are only finitely many such τ , since no labels will be assigned to a string above
σ after stage s, and there can be only finitely many such labels below σ. Therefore, elements of [σ] ∩ Ts
can be extended no more than finitely often in this way. Since all such extensions are finite, this will not be
enough to generate an element of [T] with σ as an initial segment either.

Since [σ]∩Ts is a finite tree and no path through it can be extended more than finitely often, no extension
of σ in T is infinite. Since we assumed that B was in [T], we have a contradiction. �

Lemma 3.5. Let Me be a computable Turing machine with domain 1 and let σ be labeled with me in T .
Then every infinite path in Φ([σ] ∩ T) is Schnorr trivial with respect to Me.

Proof. Let Me and σ be as described in the statement of the lemma, and let B ∈ [σ] ∩ T . We begin by
noting that if Φ(B) ∈ [Φ(T)], B ∈ [T]. We must show that

(∃M ′e comp.) (∃c ∈ ω) (∀n ∈ ω)
[
KM ′e

(Φ(B)�n) ≤ KMe(0
n) + c

]
We will show that M ′e,σ is such a computable Turing machine and that M ′e,σ and the constant 1 witness
the Schnorr triviality of Φ(B) with respect to Me. First, we must show that M ′e,σ is a computable Turing
machine. From this point on, we will write M ′e,σ as M ′e for brevity.

Lemma 3.6. M ′e is a Kraft-Chaitin set.

Proof. We first note that, since our construction is recursive, the elements of M ′e form an r.e. set.
Now we must show that µ(M ′e) ≤ 1. We know that µ(Me) = 1. Suppose we divide the measure of Me

into a sequence of intervals 〈Ik〉k>0, where we define Ik = (1 − 1
2k−1 , 1 − 1

2k
] for each k. Note that Ik has

measure precisely 1
2k

for each k. We would like to show that for each Ik, no more than k
2k+1 enters M ′e.

Theoretically, precisely the axioms that enter Me at a stage s such that ss,k−1 < s ≤ se,k should contribute
to Ik. However, it is possible that this will not be the case, since se,k−1 is defined as the least Me-stage s
such that µ(Me,s) ≥ 1− 1

2k−1 and not the least stage s such that µ(Me,s) = 1− 1
2k−1 . Therefore, it may be

that µ(Me,sk−1) > 1 − 1
2k−1 , and the most we can say is that the axioms that contribute to Ik enter Me at

or before Me-stage sk.
Suppose n ≤ k, and suppose 〈d, σ〉 enters Me at an Me-stage s such that se,n−1 < s ≤ se,n. There

are now four possibilities: that µ(Me,s) < 1 − 1
2k−1 and 〈d, σ〉 contributes nothing to Ik, that µ(Me,s−1) <

10 FRANKLIN

1− 1
2k−1 < µ(Me,s), that 1− 1

2k−1 < µ(Me,s−1) < µ(Me,s) < 1− 1
2k

, or that 1− 1
2k−1 < µ(Me,s−1) < 1− 1

2k

and µ(Me,s) > 1− 1
2k

.
In the first case, 〈d, σ〉 contributes nothing to Ik, so we need not consider it. In the third case, all of the

measure that 〈d, σ〉 contributes to µ(Me) is contained in Ik, so n = k and k
2d+1 enters µ(M ′e) when 1

2d
enters

µ(Me).
The second and fourth cases are analogous. In the second case, some of the 1

2d
that 〈d, σ〉 contributes to

µ(Me) is contained in Ik−1. Suppose that 0 < q < 1 is the fraction of this 1
2d

that is actually in Ik. Since
〈d, σ〉 is dealt with in our construction at stage n, n

2d+1 will enter µ(M ′e). We assign the proportional amount
of measure q · n

2d+1 to the part of µ(M ′e) corresponding to Ik, so for the q · 1
2d

entering Ik, q · n
2d+1 ≤ q · k

2d+1

enters µ(M ′e).
In the fourth case, some of the measure contributed to µ(Me) by 〈d, σ〉 is contained in Ik and some is

contained in Im for m > k. We treat this precisely as we did in the second case and consider only the portion
of this measure that is contained in Ik.

In each of these cases, when 〈d, σ〉 enters Me and contributes some measure to Ik, no more than k
2 of that

measure enters µ(M ′e). After summing up the contributions to the measure of M ′e corresponding to each Ik,
we can see that for each interval Ik, no more than k

2 ·
1
2k

= k
2k+1 is added to µ(M ′e). This allows us to see

that µ(M ′e) ≤
∑
k∈ω

k
2k+1 = 1, so M ′e is a Kraft-Chaitin set.

�

Lemma 3.7. µ(M ′e) is a recursive real.

Proof. It is enough to show that µ(M ′e) is the limit of a recursive sequence of rationals 〈qc〉c∈ω such that
there is a recursive function f such that for all c, |µ(M ′e)− qf(c)| < 1

2c . We let M ′e,c be the part of M ′e that
has been enumerated at the earliest point in the construction by which Sche has acted with c for σ.

We begin by observing that since µ(M ′e,c) is a finite sum of rationals for each c, each µ(M ′e,c) is a rational.
Furthermore, by our construction, 〈µ(M ′e,c)〉c∈ω is a recursive sequence, and µ(M ′e) = limc µ(M ′e,c), so we
may take our recursive sequence of rationals to be 〈µ(M ′e,c)〉c∈ω.

Finally, after the Me-stage se,c, no more than 1
2c will enter Me, so, as demonstrated in the proof of the

previous lemma, no more than
∑
j>c

j
2j+1 can be added to dom(M ′e). We can therefore see that

|µ(M ′e)− µ(M ′e,c)| ≤
∑
j>c

j

2j+1
=
c+ 2
2c+1

for each c. This inequality will allow us to find a recursive function f as mentioned in the first paragraph,
so we can see that µ(M ′) is a recursive real. �

Now, by Lemmas 3.6 and 3.7 and the Kraft-Chaitin Theorem, we may take M ′e to be a computable Turing
machine.

We must show that M ′e and the constant 1 witness the Schnorr triviality of Φ(B). If KMe
(0n) is infinite,

we are done. Otherwise, suppose that KMe
(0n) = d. Then 〈d, 0n〉 ∈ Me. At some point after 〈d, 0n〉 enters

Me, we will reach a stage in our construction s where σ will act, since µ(Me) = 1 and thus σ will act infinitely
often. At that stage s, for every τ ∈ Φ(T) of length n that is comparable to Φ(σ), we will add 〈d+ 1, τ〉 to
M ′e. Φ(B)�n will be among these τ , so KM ′e

(Φ(B)�n) ≤ d+ 1 = KMe(0
n) + 1, and M ′e and 1 will witness the

Schnorr triviality of Φ(B) with respect to Me. �

Lemma 3.8. Let Z ⊆ ω, and suppose that 〈Mi〉i∈Z is a list of computable machines with domain 1. Let BZ
be the set of infinite paths in T such that if B ∈ BZ and σ ⊆ B is labeled with me in T , then e ∈ Z. Then
any element of BZ is Schnorr trivial with respect to the elements of 〈Mi〉i∈Z .

Proof. This is clear from Lemma 3.5. �

Lemma 3.9. Requirement Gene is satisfied for each e on every infinite path of T .

SCHNORR TRIVIALITY AND GENERICITY 11

Proof. Let B ∈ [T]. Since B is infinite, there has been infinitely much branching in T along B. Therefore,
for every e, there is some initial segment of B that was labeled ge at some point.

If a string σ is labeled with ge in T , then σ has never acted in the construction. This can only happen if
no element of We is comparable to σ. In this case, Gene is satisfied trivially, since for all τ ⊇ σ, τ 6∈We.

Now suppose that no string is labeled with ge in T . Let σ be the initial segment that had this property
at a later stage of the construction than any other. Since σ’s label must have been removed when some τ
comparable to σ entered We at a stage s in the construction, σ must have acted. If τ ⊆ σ, Ts was unchanged,
and Gene was met because there is τ ∈ B such that τ ∈ We. If τ ⊃ σ, we altered Ts so that all branches
extending σ would also go through τ . Since σ was the initial segment that was last labeled ge, B will be an
extension of τ . Otherwise, the label ge would have been removed from σ due to the demand of some Geni
for some i < e, and another initial segment of B would have been labeled with ge at a later stage in the
construction. Therefore, we will meet Gene once again, since there is τ ∈ B such that τ ∈We. �

Lemma 3.10. If B ∈ [T], then B ≡T Φ(B).

Proof. This can be easily seen from the construction. �

Now we can finish the proof. This time, we let Z be the subset of ω such that i ∈ Z if and only if Mi is
computable with domain 1. We then choose the path G through T such that some initial segment of G will
be labeled with me in T if and only if e ∈ Z. By Lemma 3.8, Φ(G) will be Schnorr trivial with respect to
every computable Turing machine with domain 1 and therefore, simply Schnorr trivial. Additionally, since
Gene is satisfied for every e on B by Lemma 3.9, G is 1-generic. We may note that G ≤T 0′′ since Z ≤T 0′′.

Finally, by Lemma 3.10, Φ(G) ≡T G, so we have produced a 1-generic that is Turing equivalent to a
Schnorr trivial.

�

We can see that the resulting functionals Φ and Φ−1 in the proof of Theorem 3.3 are not total, since by
Lemma 3.4, the tree T that we build will be extended only finitely often above a string labeled with me if
µ(Me) < 1. This explains why this proof cannot give us tt-equivalence.

We may now ask what properties a 1-generic that is Turing equivalent to a Schnorr trivial may have. As
previously mentioned, such a 1-generic may be high. We show here that, in fact, such a 1-generic must be
high and that a nonhigh 1-generic cannot even compute a nonrecursive Schnorr trivial real.

Theorem 3.11. Suppose that G is a nonhigh 1-generic real. Then if A ≤T G and A is not recursive, A
cannot be Schnorr trivial.

The following lemma by Kummer [8] will be necessary for this proof. If T is a recursively enumerable
tree, we say that f : 2≤n −→ T is an embedding if σ ⊆ τ exactly when f(σ) ⊆ f(τ).

Lemma 3.12. If T is a recursively enumerable tree such that for some n, there is no embedding of 2≤n into
T , then every branch of T is recursive.

Proof of Theorem 3.11. Suppose that G is a nonhigh 1-generic real and that A ≤T G as stated. Since
A ≤T G, there is a Turing functional Ψ such that Ψ(G) = A, and we can assume that for every σ ∈ 2<ω,
Ψ(σ) converges. Now we can define, for each σ ∈ 2<ω, the tree Tσ = {α | (∃β ⊇ α)[α ⊆ Ψ(β)]}. This
produces a family of uniformly r.e. trees.

We consider two distinct cases: that in which 2≤n cannot be embedded into TG�k for some n and k, and
that in which 2≤n can be embedded into TG�k for every n and k.

If there are n and k such that 2≤n cannot be embedded into TG�k, by Lemma 3.12, every branch of TG�k
must be recursive. Since A is necessarily one of these branches, A is recursive.

If not, the finite tree 2≤n is embeddable into every TG�k for every k and n. For every σ ∈ 2<ω, we can
define Sσ to be the first enumerated subset of Tσ that is topologically equivalent to 2≤|σ|+1 if such a subset

12 FRANKLIN

exists; otherwise, we let Sσ be undefined. By our assumption, SG�n is defined for all n. We now recall the
following theorem by Martin.

Theorem 3.13. [9] The following are equivalent for a real B.
(1) B′ 6≥T 0′′.
(2) (∀f ≤T B) (∃g : ω −→ ω rec.) (∃∞n ∈ ω) [f(n) < g(n)].

Consider the function that maps each n to the number of steps required to enumerate SG�n and the
function that maps each n to the length of the greatest element of SG�n. Since both of these functions are
recursive in G and G is not high, we can find a recursive function f such that for infinitely many n, no more
than f(n) steps are needed to enumerate SG�n, and all of the elements of SG�n will have length less than or
equal to f(n).

Now, for each σ, we define gA(σ) to be the leaf of Sσ that is lexicographically closest to A � (f(|σ|))
whenever Sσ is enumerated within f(|σ|) steps and all its elements have lengths no greater than f(|σ|) and
to be the empty string 〈〉 otherwise. Therefore, f is not only Turing reducible to A, but truth-table reducible
to it, and the set R = {σ | gA(σ) 6= 〈〉} is recursive.

We now assume for a contradiction that A is Schnorr trivial. By a result in [7], there is a recursive function
h that, given a string σ, will produce a list of 2|σ| possibilities for gA(σ). We observe that for each σ ∈ R,
the set Sσ has 2|σ|+1 leaves, so there must be a leaf ασ that is not in the list of possibilities produced by h.
The mapping from σ to ασ is partial recursive, and we can use this mapping to find another partial recursive
mapping that takes a string σ to an extension βσ such that ασ ⊆ Ψβσ .

Since G is not high, G�n ∈ R for infinitely many n, and since G is 1-generic, there is an n such that
G�n ∈ R and G�n ⊆ βG�n ⊆ G. Therefore, αG�n ⊆ A and αG�n is the leaf of SG�n that is lexicographically
closest to A�f(n). However, by our definition of ασ, αG�n cannot be in the list of possibilities for gA(σ), so
A must not be Schnorr trivial. �

We end this section with a corollary to Corollary 3.2.

Corollary 3.14. There is a K-trivial real which is not Schnorr trivial.

Proof. We note that every nonzero recursively enumerable degree bounds a 1-generic degree [11]. There are
several different proofs that there is a recursively enumerable K-trivial B [14, 4], and Nies has shown that
the K-trivial reals are closed downward in the Turing degrees [10]. Therefore, there are K-trivial 1-generics.
However, by Corollary 3.2, no 1-generic is Schnorr trivial, so we have a K-trivial real that is not Schnorr
trivial. �

We may also note that since the K-trivial reals are closed downward in the Turing degrees, a degree that
contains a 1-generic either contains only K-trivials or no K-trivials.

4. Degrees without cones of Schnorr trivials

In [6], we proved the following theorem.

Theorem 4.1. Let h be a Turing degree such that h′ ≥T 0′′. Then h contains a Schnorr trivial.

Here, we show that this theorem is optimal.

Theorem 4.2. Suppose a is a Turing degree such that a′ 6≥T 0′′. Then there is a Turing degree above a that
contains no Schnorr trivial reals.

Proof. Let such a degree a be given, and let A ∈ a. We will show that if G is a 2-generic relative to A, then
A⊕G is not Turing equivalent to any Schnorr trivial real.

Let G be 2-generic relative to A, and suppose that B ≡T A ⊕ G. Then there are ΨA and ΦA such that
ΨA(G) = B and ΦA(B) = G.

SCHNORR TRIVIALITY AND GENERICITY 13

Since the statement in Section 2 relativizes, we can write “ΦA and ΨA are total, and ΦA ◦ ΨA is the
identity function” as the following ΠA

2 statement.

ϕ := (∀n ∈ ω) (∃s ∈ ω)
[
ΦAs (n)↓ ∧ΨA

s (n)↓ ∧(ΦA ◦ΨA)s(n) = n
]

Therefore, since G is 2-generic relative to A, there is an initial segment of G that forces ϕ. We call this initial
segment p and consider the set of forcing conditions P = {q ∈ 2<ω | q ⊇ p}. We will order these conditions
by writing q � r if and only if q ⊆ r. Now we may consider the set T = {ΨA(q) | q � p} as before. Since p
forces the totality of ΨA, we can see that T may be interpreted as a perfect tree that is recursive in A. We
note that B ∈ [T].

Now we use Theorem 3.13 to construct a computable Turing machine witnessing the non-Schnorr triviality
of B.

We define f : ω −→ ω such that for all n, f(n) is the least height at which at least 2n distinct strings
σ ⊕ τ in T such that τ extends ΨA(q) for each q ∈ P such that q ∈ {paσ | |σ| = n}. We will refer to the set
of such q as Qn for each n. Since T is a perfect tree, f is total, and it is clear that f ≤T A. Therefore, we
may take a recursive function g : ω −→ ω such that f(n) < g(n) for infinitely many n. We will use this g
to build a computable Turing machine M witnessing the fact that B cannot be Schnorr trivial; i.e., we will
require that M satisfy the following statement.

(∀Me comp.) (∀c ∈ ω) (∀q � p) (∃r � q) (∃n ∈ ω)
[
KMe

(ΨA(r)�n) > KM (0n) + c
]

We will not satisfy this statement directly for all q ∈ P, since f(n) < g(n) only infinitely often and not
for all n. However, if we attempt to satisfy it for all elements of each Qn, we will be correct infinitely often,
and if we succeed for the elements of Qn, we will clearly succeed for all of the elements of Qi for i < n.

The rest of this proof is very much like that of Theorem 2.1. As before, we begin by listing the pairs 〈e, c〉
such that µ(Me) ≥ 1− 1

2c . This list is recursively enumerable, and if Me is computable with domain 1, 〈e, c〉
will appear in this list for all c ∈ ω. Therefore, this list will be infinite, and we may write it as 〈em, cm〉m∈ω.

We will consider the pair 〈em, cm〉. We will allot 1
2m+1 of the measure of M to ensure that for each q ∈ P,

there is an extension of ΨA(q) that is not Schnorr trivial with respect to Mem and cm. To do this, we will
ensure that we cannot force the statement that there is no such extension. Since G is 2-generic with respect
to A and B ∈ [T], this will be sufficient.

We will take care of this particular pair for the elements of Qi with 1
2(m+1)+(i+1) of the 1

2m+1 we originally
allotted. We will have 2i elements in Ψ(Qi) = {ΨA(q) | q ∈ Qi}, so we will be able to use a maximum of

1
2(m+1)+(i+1) · 1

2i = 1
2(m+1)+2i+1 of the measure of M above each such element. From this point on, we will refer

to 〈em, cm〉 simply as 〈e, c〉.
Now we may use the values of g to determine a height h such that there are at least 2(m+1)+2i+1 + 1

extensions of ΨA(q) of each q in Qi at this height. The smallest measure that Me can assign a string of this
length after a stage at which µ(Me) ≥ 1 − 1

2c is less than 1
2(m+1)+2i+1 · 1

2c = 1
2(m+1)+2i+1+c . Therefore, the

greatest complexity that Me can assign an extension of ΨA(q) for a q in Qi of height at least h after such a
stage must be strictly greater than (m+ 1) + 2i+ 1 + c.

Let ne,c be the length of the longest string in the range of Me that appears by the smallest stage s at
which µ(Me,s) ≥ 1− 1

2c , and let n be the smallest integer such that the following three conditions hold.
(1) n > ne,c.
(2) n ≥ h.
(3) At this stage in the construction of M , 0n 6∈M .

We now add 〈(m+ 1) + 2i+ 1, 0n〉 to M , so KM (0n) = (m+ 1) + 2i+ 1.

14 FRANKLIN

We repeat this procedure for each m and i, so we can see that M is a computable machine based on the
following calculation.

µ(M) =
∑
m∈ω

∑
i∈ω

1
2(m+1)+2i+1

=
∑
m∈ω

1
2m+1

· 1
6

=
1
6

Now we can see that for infinitely many i, for each q ∈ Qi, there is an r ∈ P such that ΨA(r) extends ΨA(q)
and the following occurs.

KMe(Ψ
A(r)�n) > (m+ 1) + 2i+ c = KM (0n) + c

This is enough, since if this statement is true for all q ∈ Qi, it is true for all q ∈ Qn for n < i as well.
Therefore, for every element of every Qi, there will be an extension of its image under ΨA that will, together
with M , witness the non-Schnorr triviality of its branch with respect to Me and c. Since there are infinitely
many such i, this will enable us to force B to be non-Schnorr trivial.

�

This theorem, together with Theorem 9 of [6], gives the following result.

Theorem 4.3. Let a be a Turing degree. Then a′ ≥T 0′′ if and only if every degree above a contains a
Schnorr trivial real.

5. A further question

While a 1-generic cannot be tt-equivalent to a Schnorr trivial, it can be Turing equivalent to one. This
naturally leads us to consider the question of wtt-reducibility. We recall that A ≤wtt B if there is some Φ
such that Φ(B) = A and there is a recursive function f such that to calculate A(n) using Φ, B�f(n) will
be sufficient. This function need not be total, so wtt-reducibility is intermediate between tt-reducibility and
Turing reducibility.

We note that neither the proof of Theorem 3.1 nor the proof of Theorem 3.3 can be adapted to the wtt
case. We cannot guarantee that the tree T in the proof of Theorem 3.1 is perfect if we have wtt-equivalence
instead of tt-equivalence, since a wtt-functional may or may not be total. Therefore, this proof does not
work for wtt-equivalence. Similarly, in the construction in the proof of Theorem 3.3, it does not seem that
we can bound the length of the initial segment of either X or G necessary to compute the other recursively.
To determine the amount of X we need to compute G, we need to know which r.e. sets G must meet, which
is a Σ0

1 question. Similarly, to determine the amount of G we need to compute X, we must know which Me

have measure ≥ 1− 1
2c for certain c and e, which is, again, a Σ0

1 question. Therefore, the following question
remains open.

Question 5.1. Is there a 1-generic real that is wtt-equivalent to a Schnorr trivial real?

References

[1] Gregory J. Chaitin. A theory of program size formally identical to information theory. J. Assoc. Comput. Mach., 22:329–
340, 1975.

[2] Rod Downey, Evan Griffiths, and Geoffrey Laforte. On Schnorr and computable randomness, martingales, and machines.

Math. Log. Q., 50(6):613–627, 2004.
[3] Rod Downey, Denis R. Hirschfeldt, André Nies, and Sebastiaan A. Terwijn. Calibrating randomness. Bull. Symbolic Logic,

12(3):411–491, 2006.

[4] Rod G. Downey, Denis R. Hirschfeldt, André Nies, and Frank Stephan. Trivial reals. In Proceedings of the 7th and 8th
Asian Logic Conferences, pages 103–131, Singapore, 2003. Singapore Univ. Press.

SCHNORR TRIVIALITY AND GENERICITY 15

[5] Rodney G. Downey and Evan J. Griffiths. Schnorr randomness. J. Symbolic Logic, 69(2):533–554, 2004.

[6] Johanna N.Y. Franklin. Schnorr trivial reals: A construction. Arch. Math. Logic, 46(7–8):665–678, 2008.

[7] Johanna N.Y. Franklin and Frank Stephan. Schnorr trivial sets and truth-table reducibility. Technical Report TRA3/08,
School of Computing, National University of Singapore, 2008.

[8] Martin Kummer. A proof of Beigel’s cardinality conjecture. J. Symbolic Logic, 57(2):677–681, 1992.

[9] Donald A. Martin. Classes of recursively enumerable sets and degrees of unsolvability. Z. Math. Logik Grundlagen Math.,
12:295–310, 1966.

[10] André Nies. Lowness properties and randomness. Adv. Math., 197(1):274–305, 2005.

[11] Piergiorgio Odifreddi. Classical Recursion Theory, Volume II. Number 143 in Studies in Logic and the Foundations of
Mathematics. North-Holland, 1999.

[12] C.-P. Schnorr. Zufälligkeit und Wahrscheinlichkeit, volume 218 of Lecture Notes in Mathematics. Springer-Verlag, Heidel-

berg, 1971.
[13] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer-Verlag, 1987.

[14] Domenico Zambella. On sequences with simple initial segments. Technical Report ILLC ML-1990-05, University of Ams-
terdam, 1990.

E-mail address: franklin@math.nus.edu.sg

