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Abstract. We investigate the relationship between lowness for Schnorr randomness and Schnorr triviality.

We show that a real is low for Schnorr randomness if and only if it is Schnorr trivial and hyperimmune free.

1. Introduction

There are three different approaches to algorithmic randomness. In the first approach, the unpredictability
approach, we say that a real is random if its (n + 1)st bit cannot be predicted given its first n bits. The
second approach is one of measure: we say a real is random if it does not belong to any effectively presented
null class. Finally, we may also call a real random if has high initial-segment complexity; i.e., its initial
segments cannot be described in a simple way.

Of course, each of these notions is relative to the type of algorithm used to generate the null set, predict
the real’s bits, or describe its initial segments. We will begin by describing Martin-Löf randomness and
Schnorr randomness. Then we will be able to approach the main question of this paper: what does it mean
for a real to be “far from random,” and if there are multiple definitions, do they coincide?

There are three ways for a real A to be “far from random” that we will consider. One of them is simply
that if A is used as an oracle, it is not powerful enough to make a random set appear nonrandom. The
second is based on the measure-theoretic approach to randomness. Here, if A is used as an oracle for the
presentation of the null class, it will not make a random set appear nonrandom. The third way is based
on the initial-segment complexity approach. In this case, a real is “far from random” if its initial-segment
complexity is no more than that of a recursive real.

All of these definitions coincide for Martin-Löf randomness [11], but this result is far from obvious. In this
paper, we show that this situation does not obtain for Schnorr randomness and provide a precise description
of the relationship between three of these notions: they turn out to be equivalent in the hyperimmune-free
degrees. At the end, we will present additional evidence that suggests, when combined with these results,
that the framework in which the Schnorr trivial reals should be studied is the tt-degrees rather than the
Turing degrees.

1.1. Terminology and definitions. Most of the notation is standard and follows Soare [14]. We will
consider real numbers to be elements of 2ω and Turing machines to be recursive functions from 2<ω to 2<ω.

We will use µ to denote Lesbesgue measure throughout the paper, and for any σ ∈ 2<ω, we will say that
µ(σ) = µ([σ]) = 1

2|σ|
. If S ⊆ 2<ω is a prefix-free set of binary strings, we let µ(S) =

∑
σ∈S µ(σ) =

∑
σ∈S

1
2|σ|

.
We will often consider the measure of the domain of a Turing machine, but never the range. Therefore, we
will simply write µ(M) for µ(dom(M)). It should be noted that if M is a prefix-free Turing machine and we
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list the elements of M as 〈τi, σi〉, we can see that µ(M) =
∑
i

1
2|τi|

. We will assume from this point on that
all Turing machines we consider are prefix free.

As in [4], we will use K to denote prefix-free Kolmogorov complexity. In this paper, we will generally
not be considering prefix-free Kolmogorov complexity with respect to a universal machine, but Kolmogorov
complexity with respect to some other particular Turing machine. This will make the following notation
necessary.

Definition 1.1. Let M be a Turing machine, and let σ ∈ 2<ω. The prefix-free Kolmogorov complexity of σ
with respect to M is KM (σ) = min{|τ | |M(τ) = σ}.

If no machine is specified in the subscript, a universal Turing machine is being used.
It is clear that the measure of each Turing machine’s domain is a recursively enumerable real; i.e., effec-

tively approximable from below. However, we will generally wish to consider the restricted class of Turing
machines that satisfy the following condition.

Definition 1.2. A Turing machine M is computable if the measure of its domain is a recursive real.

These definitions allow us to define the two types of randomness that we will discuss: Martin-Löf and
Schnorr randomness.

Definition 1.3. A Martin-Löf test is a uniformly r.e. sequence 〈Vi〉i∈ω of Σ0
1 classes such that µ(Vi) ≤ 1

2i .
A real A is Martin-Löf random if for all Martin-Löf tests 〈Vi〉i∈ω, A 6∈ ∩i∈ωVi.

Schnorr proved that this measure-theoretic definition is equivalent to an initial-segment complexity defi-
nition.

Theorem 1.4. [13] A is Martin-Löf random if and only if (∃c ∈ ω)(∀n ∈ ω)[K(A�n) ≥ n− c].

Now we turn our attention to Schnorr randomness. Here, we ask that the measure of each Martin-Löf
test be recursive instead of simply recursively enumerable.

Definition 1.5. A Martin-Löf test is a Schnorr test if µ(Vi) = 1
2i for all i. A real A is Schnorr random if

for all Schnorr tests 〈Vi〉i∈ω, A 6∈ ∩i∈ωVi.

There is no universal Schnorr test. Therefore, we cannot use a universal Turing machine to define Schnorr
randomness in terms of computational complexity. Instead, we must quantify over all computable Turing
machines.

Theorem 1.6. [5] A real A is Schnorr random if and only if (∀M comp.)(∃c ∈ ω)(∀n ∈ ω)[KM (A�n) ≥ n−c].

1.2. Previous work. As mentioned before, there are three primary ways of describing a real as “far from
random.” In two cases, we show that the real has no power as an oracle when the randomness of other reals
is in question, and in the third, we show that its initial-segment complexity is no greater than that of a
recursive real. Here we present three different approaches that each capture one of these concepts. We let
R represent a notion of randomness such as Martin-Löf randomness or Schnorr randomness.

Definition 1.7. A real A is low for R if R = RA, where R stands for the class of reals that are R-random.

Definition 1.8. A real A is low for R-tests if for every R-test 〈UAi 〉i∈ω relative to A, there is an R-test
〈Vi〉i∈ω such that ∩i∈ωUAi ⊆ ∩i∈ωVi.

The third approach, R-triviality, cannot easily be defined formally at this level of generality. Each
randomness notion R with an initial-segment complexity definition has an associated reducibility ≤R used
to indicate the relative initial-segment complexity of two reals. We say that a real A is R-trivial if A ≤R 0ω;
that is, if A’s initial-segment complexity is no more than that of a recursive real with respect to this particular
reducibility. We will formalize this approach later for the particular case of Schnorr triviality.
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Clearly, if A is low for R-tests, it is low for R. However, it is not obvious that either lowness notion is
related to the triviality notion.

Nies has shown that in the case of Martin-Löf randomness, these notions describe the same set of reals
[11]. Furthermore, in the same paper, he showed that this set of reals is easy to describe: it is a Σ0

3 ideal
in the ∆0

2 degrees that is generated by its recursively enumerable members. However, the situation is much
more complicated for Schnorr trivial reals, reals that are low for Schnorr tests, and reals that are low for
Schnorr randomness.

Downey, Griffiths, and Laforte developed the following characterization of Schnorr triviality in [3], based
on a notion of initial-segment complexity for Schnorr randomness previously defined in [5].

Definition 1.9. [3] We say that A ≤Sch B if for every computable Turing machine M , there is a computable
Turing machine M ′ and a constant c ∈ ω such that (∀n ∈ ω)[KM ′(A�n) ≤ KM (B�n) + c]. Therefore, a real
A is Schnorr trivial (A ≤Sch 0ω) if the following statement holds.

(∀M comp.)(∃M ′ comp.)(∃c ∈ ω)(∀n ∈ ω)[KM ′(A�n) ≤ KM (0n) + c]

Downey, Griffiths, and Laforte have proved that there is a Turing complete Schnorr trivial real, but that
there is an r.e. degree that contains no Schnorr trivial reals [3]. While this shows that the Schnorr trivial
Turing degrees are not downward closed, they also proved that the Schnorr trivial tt-degrees are downward
closed [3].

The work done to date with reals that are low for Schnorr randomness and those that are low for Schnorr
tests has produced an entirely degree-theoretic characterization. Here we let Dn denote the nth canonical
finite set.

Definition 1.10. A set A is recursively traceable if there is a recursive, increasing, unbounded function
p : ω −→ ω as follows.

(∀f ≤T A)(∃r : ω −→ ω rec.)(∀n ∈ ω)[f(n) ∈ Dr(n) and |Dr(n)| ≤ p(n)]

A recursive, increasing, unbounded function such as p is called an order function.

We may therefore think of the recursively traceable reals as those that are uniformly hyperimmune free.
We say that r is a recursive trace and that p is a bound for a recursive trace for every f ≤T A.

The first result on reals that are low for Schnorr tests comes from Terwijn and Zambella [15]. Later, Kjos-
Hanssen, Nies, and Stephan used a similar technique to demonstrate that, given Terwijn and Zambella’s
result, the reals that are low for Schnorr tests are precisely the reals that are low for Schnorr randomness
[9].

Theorem 1.11. [15] A set is recursively traceable if and only if it is low for Schnorr tests.

Theorem 1.12. [9] A set is recursively traceable if and only if it is low for Schnorr randomness.

This will allow us to refer to these reals as simply “low for Schnorr” or “Schnorr low” and to the property
as “lowness for Schnorr.”

Although the reals that are low for Martin-Löf randomness are precisely those that are K-trivial (that
is, trivial in the sense of Martin-Löf), being low for Schnorr is not equivalent to being Schnorr trivial. All
reals that are low for Schnorr are hyperimmune free, and there is a Turing complete Schnorr trivial. This
Schnorr trivial is clearly not hyperimmune free and is thus not Schnorr low. The best that can be hoped
for is that all Schnorr lows are Schnorr trivial. We show that this is, in fact, the case, and we will prove an
even stronger theorem.

2. The main result

Theorem 2.1. A real A is Schnorr low if and only if it is Schnorr trivial and hyperimmune free.
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The first part of the proof of this theorem is very much like the argument in the proof of Theorem 9 in
[6], while the other part relies on the totality of Turing reductions within the hyperimmune-free degrees to
construct a computable Turing machine.

Before we prove the main theorem, we state the following result which we will need from [1].

Theorem 2.2 (Kraft-Chaitin Theorem [1]). Let 〈di, σi〉i∈ω be a recursive sequence with di ∈ ω and σi ∈ 2<ω

for all i such that
∑
i

1
2di
≤ 1. (Such a sequence is called a Kraft-Chaitin set, and each element of the

sequence is called a Kraft-Chaitin axiom.) Then there are strings τi and a prefix-free machine M such that
dom(M) = {τi | i ∈ ω} and for all i and j in ω,

(1) if i 6= j, then τi 6= τj,
(2) |τi| = di,
(3) and M(τi) = σi.

The Kraft-Chaitin Theorem allows us to construct a prefix-free Turing machine by specifying only the
lengths of the strings in the domain rather than the strings themselves. We will therefore identify 〈τ, σ〉 with
〈d, σ〉, where d = |τ |, throughout.

Proof of Theorem 2.1. Let A ∈ 2ω be low for Schnorr. Since we know that A must be hyperimmune free,
we need only show that the following is true.

(∀M comp.) (∃M ′ comp.) (∃c ∈ ω) (∀n ∈ ω) [KM ′(A�n) ≤ KM (0n) + c]

We consider an arbitrary computable machine M and fix an enumeration 〈Ms〉s∈ω. As per [5], without
loss of generality, we may assume that µ(M) = 1. We must build a computable machine M ′ and determine
a constant c so that M ′ and c witness the Schnorr triviality of A.

Our construction will proceed in stages. However, we will need to consider two different types of stages:
those in the enumeration of the elements of M , and the stages of our construction. For clarity, we will refer
to the former as M -stages and to the latter simply as stages.

We now define two recursive sequences of natural numbers to aid us in our construction: 〈sk〉k∈ω and
〈nk〉k∈ω, which we define as follows.

sk = min
{
s | µ(Ms) ≥ 1− 1

2k

}
nk = max{|σ| | σ ∈Msk}

Note that since µ(M) = 1, both sk and nk will be defined for all k.
Since A is Schnorr low and thus recursively traceable, we know that there is an order function p : ω −→ ω

such that
(∀f ≤T A) (∃r : ω −→ ω rec.) (∀n ∈ ω)

[
f(n) ∈ Dr(n) and |Dr(n)| ≤ p(n)

]
.

Terwijn and Zambella showed that if this statement holds for one such function p, it holds for any order
function [15]. Therefore, we may choose the function p such that p(0) = 1 and p(k) = k for all k > 0. We
let f(k) = A�nk. Since 〈nk〉k∈ω is a recursive sequence, f ≤T A.

Stage k = 0: We have p(0) = 1. Since A�n0 is the empty sequence and no axioms have entered M , we
set M ′0 = ∅.

Stage k = 1: We have p(1) = 1 and f(1) = A�n1. Therefore, A�n1 ∈ Dr(1) and |Dr(1)| ≤ 1, so we can
identify the first n1 bits of A. If 〈d, τ〉 enters M at M -stage s ≤ s1, we add 〈d+ 1, A�|τ |〉 to M ′. We
define M ′1 to be the sequence of Kraft-Chaitin axioms that have been enumerated into M ′ by the
end of this stage.

Stage k > 1: In this case, p(k) = k, and f(k) = A�nk must belong to the ≤ k elements of Dr(k).
Therefore, without loss of generality, we can represent Dr(k) as {σ1, . . . , σk}. We are now able to
further limit the elements of Dr(k) that we must actually consider.
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We call an element of Dr(k) acceptable if we cannot rule out the possibility that it is A�nk using its
length and its compatibility with strings previously identified as acceptable as criteria. Clearly, only
those elements of Dr(k) that have length nk can be acceptable. Furthermore, since A�nk extends
A �nk−1, an acceptable element of Dr(k) must extend an acceptable element of Dr(k−1). These
acceptable strings can be recognized recursively, and A�nk will clearly be among them. Suppose
there are l acceptable strings. Clearly, l must be less than or equal to k.

Now we may enumerate axioms into M ′. If 〈d, τ〉 enters M at M -stage s for sk−1 < s ≤ sk, we
add 〈d + 1, σi〉 to M ′ at stage s for each acceptable string σi for a total of l new axioms. If l is
strictly less than k, we enumerate the axiom 〈d+ 1, σi〉 into M ′ k − l times, where i is the smallest
index of an acceptable string. This gives us a total of l+ (k− l) = k new axioms for each such 〈d, τ〉.
We let M ′s be the sequence of Kraft-Chaitin axioms that have been enumerated into M ′ by the end
of stage s.

Now we define M ′ to be ∪sM ′s.

Lemma 2.3. M ′ is a Kraft-Chaitin set.

Proof. We first note that, since our construction is recursive, M ′ is r.e.
Now we must show that µ(M ′) ≤ 1. We know that µ(M) = 1. Suppose we divide the measure of M

into a sequence of intervals 〈Ik〉k>0, where for each k, we define Ik = (1 − 1
2k−1 , 1 − 1

2k
]. Note that Ik has

measure precisely 1
2k

for each k. We would like to show that for each Ik, no more than k
2k+1 enters M ′.

Theoretically, precisely the axioms that enter M at a stage s such that sk−1 < s ≤ sk should contribute to
Ik. However, it is possible that this will not be the case, since sk−1 is defined as the least M -stage s such
that µ(Ms) ≥ 1 − 1

2k−1 and not the least stage s such that µ(Ms) = 1 − 1
2k−1 . Therefore, it may be that

µ(Msk−1) > 1− 1
2k−1 , and the most we can say is that the axioms that contribute to Ik enter M at or before

M -stage sk.
Suppose n ≤ k, and suppose 〈d, σ〉 enters M at an M -stage s such that sn−1 < s ≤ sn. There are now four

possibilities: that µ(Ms) < 1− 1
2k−1 and 〈d, σ〉 contributes nothing to Ik, that µ(Ms−1) < 1− 1

2k−1 < µ(Ms),
that 1− 1

2k−1 < µ(Ms−1) < µ(Ms) < 1− 1
2k

, or that 1− 1
2k−1 < µ(Ms−1) < 1− 1

2k
and µ(Ms) > 1− 1

2k
.

In the first case, 〈d, σ〉 contributes nothing to Ik, so we need not consider it. In the third case, all of the
measure that 〈d, σ〉 contributes to µ(M) is contained in Ik, so n = k and k

2d+1 enters µ(M ′) when 1
2d

enters
µ(M).

The second and fourth cases are analogous. In the second case, some of the 1
2d

that 〈d, σ〉 contributes to
µ(M) is contained in Ik−1. Suppose that 0 < q < 1 is the fraction of this 1

2d
that is actually in Ik. Since

〈d, σ〉 is dealt with in our construction at stage n, n
2d+1 will enter µ(M ′). We assign the proportional amount

of measure q · n
2d+1 to the part of µ(M ′) corresponding to Ik, so for the q · 1

2d
entering Ik, q · n

2d+1 ≤ q · k
2d+1

enters µ(M ′).
In the fourth case, some of the measure contributed to µ(M) by 〈d, σ〉 is contained in Ik and some is

contained in Im for m > k. We treat this precisely as we did in the second case and consider only the portion
of this measure that is contained in Ik.

In each of these cases, when 〈d, σ〉 enters M and contributes some measure to Ik, no more than k
2 of that

measure enters µ(M ′). After summing up the contributions to the measure of M ′ corresponding to each Ik,
we can see that for each interval Ik, no more than k

2 ·
1
2k

= k
2k+1 is added to µ(M ′). This allows us to see

that µ(M ′) ≤
∑
k∈ω

k
2k+1 = 1, so M ′ is a Kraft-Chaitin set.

�

Lemma 2.4. µ(M ′) is a recursive real.

Proof. It is enough to show that µ(M ′) is the limit of a recursive sequence of rationals 〈qk〉k∈ω such that
there is a recursive function f such that for all k, |µ(M ′)− qf(k)| < 1

2k
.
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We begin by observing that since µ(M ′k) is a finite sum of rationals for each k, each µ(M ′k) is a rational.
Furthermore, by our construction, 〈µ(M ′k)〉k∈ω is a recursive sequence, and µ(M ′) = limk µ(M ′k), so we may
take our recursive sequence of rationals to be 〈µ(M ′k)〉k∈ω.

Finally, after stage k, no more than 1
2k

will enter M , so, as demonstrated in the proof of Lemma 2.3, no
more than

∑
j>k

j
2j+1 can be added to dom(M ′). We can therefore see that

|µ(M ′)− µ(M ′k)| ≤
∑
j>k

j

2j+1
=
k + 2
2k+1

for each k. This inequality will allow us to find a recursive function f as mentioned in the first paragraph,
so we can see that µ(M ′) is a recursive real. �

By these two lemmas and the Kraft-Chaitin Theorem, we may consider M ′ to be a computable Turing
machine.

Lemma 2.5. M ′ and the constant 1 witness the Schnorr triviality of A with respect to M .

Proof. Let n ∈ ω be arbitrary. We would like to show that KM ′(A�n) ≤ KM (0n) + 1. If KM (0n) = ∞, we
are done. Otherwise, suppose that KM (0n) = d for some d ∈ ω. During our construction, we would have
added 〈d + 1, τ〉 to M ′ for all τ of length n that were substrings of acceptable strings at that point. Since
A�n is a substring of A�nk for any k such that nk ≥ n, we can see that KM ′(A�n) ≤ d+ 1 = KM (0n) + 1, so
M ′ and the constant 1 witness the Schnorr triviality of A with respect to M . �

Therefore, for any arbitrary computable Turing machine M , we may produce another computable Turing
machine M ′ and a constant c witnessing the Schnorr triviality of A with respect to M , so A is Schnorr
trivial.

We now turn our attention to the reals which are Schnorr trivial and hyperimmune free to complete the
proof of this theorem. We will assume that a real A is hyperimmune free but not Schnorr low and proceed
to show that A cannot be Schnorr trivial.

Since A is not Schnorr low, then for any order function p : ω −→ ω,(
∃gA

)
(∀r : ω −→ ω rec.) (∃n ∈ ω)

[
gA(n) 6∈ Dr(n) or |Dr(n)| > p(n)

]
.

By the Padding Lemma, it will be enough to define a computable M such that

(∀Mi comp.) (∃n ∈ ω) [KMi
(A�n) > KM (0n) + i] .

Now we define l(n) to be the use function for g relative to all possible A. We note that since we are
working within the hyperimmune-free degrees, all Turing reductions are total. Therefore, l(n) will be a total
recursive function. We then use this function to define M as follows.

M = {〈n+ 1, 0l(n)〉 | n ∈ ω}
We note that µ(M) = 1 and that M is a Kraft-Chaitin set, so we may treat M as a computable Turing

machine.
We now select p(n) = 22n+1, so there is a gA such that

(∀r : ω −→ ω rec.) (∃n ∈ ω)
[
gA(n) 6∈ Dr(n) or |Dr(n)| > 22n+1

]
.

Now we note that for any Mi, there are at most 22n+1 many σ ∈ 2<ω of length l(n) such that KMi(σ) ≤
2n+ 1. We use this information about the Mis to define functions ri such that

Dri(n) = {gσ(n) | KMi
(σ) ≤ 2n+ 1}.

If Mi is computable, Dri(n) can be determined recursively by considering the Schnorr test associated with
Mi to find the appropriate σs. Therefore, in this case, ri will be a recursive function. For such an ri,

(∃n ∈ ω)
[
gA(n) 6∈ Dri(n) or |Dri(n)| > 22n+1

]
.
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We know from the definition of ri that |Dri(n)| ≤ 22n+1 for all n, so we can deduce that
(∃n ∈ ω)

[
gA(n) 6∈ Dri(n)

]
. Therefore,

KMi
(A�l(n)) > 2n+ 1 = KM (0l(n)) + n.

This is enough to show that KMi
(A�l(n)) > KM (0l(n)) + i for any computable Mi. If n ≥ i, we have

KMi(A�l(n)) > KM (0l(n)) + i and we are done. There are only finitely many n such that n < i, so in that
case, there is another recursive function r′i that will produce a Dr′i(n) demonstrating that KMi(A�l(n)) >
KM (0l(n)) + i for these n as well. Therefore, A is not Schnorr trivial, and we have our contradiction.

�

3. Conclusions

In the Martin-Löf case, all of the triviality and lowness notions coincide. Although this does not happen
in the Schnorr case, it makes it natural to ask if there is a subset of the Turing degrees in which it does. We
have answered this question positively in this paper: the hyperimmune-free degrees are the largest possible
such subset. Now we may ask an additional question: is there any significance to the fact that it is the
hyperimmune-free degrees with this property?

We note that the hyperimmune-free Turing degrees are precisely those that contain precisely one tt-degree
and one wtt-degree [8]. Since this is where Schnorr triviality and lowness for Schnorr randomness coincide,
Theorem 2.1 suggests that the wtt-degrees or the tt-degrees may be a more appropriate structure in which
to consider Schnorr triviality.

Furthermore, the Schnorr trivial reals do not behave as one might expect in the Turing degrees: they
are not downward closed [3], and they may have arbitrarily high Turing degree [6]. These results also
suggest, when put together, that the Schnorr trivial reals may be more properly considered in another
degree structure.

Downey, Griffiths, and Laforte connected Schnorr trivial reals to the tt-degrees in [3], when they proved
that the Schnorr trivial reals are downward closed in the tt-degrees. In [7], we show that this is not the case
in the wtt-degrees. Since it seems desirable for the Schnorr trivial reals to be closed downward, this suggests
that the tt-degrees are a more appropriate structure than the wtt-degrees. We also show in [7] that Schnorr
triviality is equivalent to a number of other properties closely tied to tt-reducibility. One of these properties
allows us to see easily that the Schnorr trivial reals are actually closed under join and therefore form an ideal
in the tt-degrees, answering a question of Downey, Griffiths, and Laforte in [3]. The proof of this result is
based on a characterization of Schnorr triviality that is very similar to recursive traceability.

We also note that the Schnorr triviality of a real is determined entirely by computable Turing machines
and tt-reducibility is based on the notion of total Turing functionals. These factors all lead us to believe
that the most appropriate setting in which to analyze the Schnorr trivial reals is the tt-degrees.

It would also be interesting to study the Turing degrees that contain Schnorr trivials more closely. For
instance, the following question may prove useful.

Question 3.1. If a hyperimmune Turing degree contains a Schnorr trivial real, must it contain at least two
tt-degrees that contain Schnorr trivial reals? Infinitely many? An antichain of such tt-degrees?

We may also consider the following question mentioned in [10], which is still open.

Question 3.2. Is the class of K-trivial reals definable in the ∆0
2 degrees or the recursively enumerable

degrees?

We may ask similar questions about Schnorr trivial and Schnorr low reals. However, we cannot limit
ourselves naturally to a given type of degree in the case of Schnorr triviality, though it is possible for Schnorr
lowness.

Question 3.3. Is the class of Schnorr trivial reals definable in the Turing degrees or tt-degrees?
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Question 3.4. Is the class of Schnorr low reals definable in the hyperimmune-free degrees?

Of course, the answers to these questions are not known for the K-trivial reals, either, so there will be
no direct comparison. However, if we find that the Schnorr trivial reals are definable in one degree structure
but not the other, that might provide evidence that one is more natural than the other.

If the natural structure for the Schnorr trivial reals is the tt-degrees, we should consider the possibility
that this may be the natural structure for the Schnorr random reals as well. Nies, Stephan, and Terwijn
have proven that Martin-Löf randomness and Schnorr randomness are separable in the high degrees [12].
As the Turing and tt-degrees of the Schnorr random reals are investigated further, it is possible that their
behavior in the tt-degrees will prove interesting.

We may approach this by asking whether Schnorr random reals have the same properties in the Turing
degrees as the Martin-Löf random reals do. If they do not, we may then ask whether the Schnorr random
reals would have these properties in the tt-degrees. We may again consider definability, though once again,
the question, proposed by Kučera, of the definability of the Martin-Löf random reals in the Turing degrees
is still open [10].

Question 3.5. Is the class of Schnorr random reals definable in the Turing degrees or the tt-degrees?

One theorem concerning Martin-Löf random reals that should certainly be considered in the context of
Schnorr randomness is Demuth’s Theorem.

Theorem 3.6. [2] If A is a Martin-Löf random real and 0 <T B ≤tt A, then there is a Martin-Löf random
set C such that C ≡wtt B.

This theorem is interesting for several reasons. First, it shows that in some sense, the Martin-Löf random
reals are downward closed. Second, its dependence on the use of different reducibilities makes it ideal for
our purposes in understanding the role that the different reducibilities play in randomness. This leads to
the following questions.

Question 3.7. Can Demuth’s Theorem be sharpened? For instance, can we conclude instead that there is
a Martin-Löf random C ≡tt B?

Question 3.8. Does Demuth’s Theorem hold for Schnorr randomness?
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