
Archive for Mathematical Logic manuscript No.
(will be inserted by the editor)

Johanna N.Y. Franklin

Schnorr trivial reals
A construction

Received: date / Revised: date

Abstract A real is Martin-Löf (Schnorr) random if it does not belong to any ef-
fectively presented null Σ 0

1 (recursive) class of reals. Although these randomness
notions are very closely related, the set of Turing degrees containing reals that
are K-trivial has very different properties from the set of Turing degrees that are
Schnorr trivial. Nies proved in [12] that all K-trivial reals are low. In this paper,
we prove that if h′ ≥T 0′′, then h contains a Schnorr trivial real. Since this con-
cept appears to separate computational complexity from computational strength,
it suggests that Schnorr trivial reals should be considered in a structure other than
the Turing degrees.

Keywords randomness · triviality · Schnorr trivial

Mathematics Subject Classification (2000) 03D15

1 Preliminaries

We will say that a real is an element of 2ω and that a tree is a subset of 2<ω that
is closed under substrings. The set of all infinite branches through a tree T will be
represented by [T], and the set of all τ ∈ 2<ω extending a binary string σ will be
represented by [σ].

Throughout this paper, µ will represent Lebesgue measure.

This material is based upon work supported under a National Science Foundation Graduate
Research Fellowship. A preliminary version of this paper appeared in Electronic Notes in The-
oretical Computer Science.

Johanna N.Y. Franklin
Department of Mathematics
National University of Singapore
2, Science Drive 2
Singapore 117543
SINGAPORE
E-mail: franklin@math.nus.edu.sg

2 Johanna N.Y. Franklin

Definition 1 We will define a Turing machine to be a recursive function from
2<ω to 2<ω . A Turing machine M is said to be prefix free if all distinct σ and τ

in dom(M) are incomparable. A prefix-free Turing machine U is universal if for
each prefix-free machine M, there is some τ ∈ 2<ω such that

(∀σ ∈ 2<ω)[U(τa
σ) = M(σ)].

Such a machine can easily be constructed by taking an effective list 〈Mi〉i∈ω

of all prefix-free Turing machines and setting U(1i0aσ) = Mi(σ) [4].
We will only consider prefix-free Turing machines. Since we will often con-

sider the measure of the domain of a Turing machine but never the range, we will
write µ(M) for µ(dom(M)). Note that for a prefix-free Turing machine M, if we
list the elements of M as 〈τi,σi〉, µ(M) = Στi

1
2|τi|

.

Definition 2 We say that a Turing machine M is computable if the measure of its
domain is a recursive real.

We will use the same notation for Kolmogorov complexity as Downey et al.
do in [4].

Definition 3 Let M be a Turing machine, and let σ ∈ 2<ω . The prefix-free Kol-
mogorov complexity of σ with respect to M is KM(σ) = min{|τ| | M(τ) = σ}.

When the machine is unspecified (for instance, when we write K(σ)), a uni-
versal Turing machine is being used. Note that the particular universal Turing
machine is irrelevant up to an additive constant.

We will say that σ ∈ M for σ ∈ 2<ω and a Turing machine M when there is a
τ ∈ 2<ω such that 〈τ,σ〉 ∈ M.

2 Martin-Löf randomness, lowness, and triviality

Before we begin analyzing the reals that are “far from Schnorr random,” we review
what is known for the most heavily studied notion of randomness, Martin-Löf
randomness.

Definition 4 A Martin-Löf test is a uniformly r.e. sequence 〈Vi〉i∈ω of Σ 0
1 classes

such that µ(Vi) ≤ 1
2i . A real A is Martin-Löf random if for all Martin-Löf tests

〈Vi〉i∈ω , A 6∈ ∩i∈ωVi.

Martin-Löf proved that there is a universal Martin-Löf test; i.e., a Martin-Löf
test 〈Ui〉i∈ω such that a real A is Martin-Löf random if and only if A 6∈ ∩i∈ωUi [10].
Later, Schnorr demonstrated that Martin-Löf randomness can also be defined in
terms of computational complexity [14].

Theorem 1 [14] A is Martin-Löf random if and only if (∃c ∈ ω)(∀n ∈ ω)[K(A�
n)≥ n− c].

Schnorr trivial reals 3

It can be seen easily from the Martin-Löf test definition of Martin-Löf ran-
domness that there are Π 0

1 classes that contain only Martin-Löf random reals.
Therefore, we can apply the Low Basis Theorem and the Hyperimmune-free Ba-
sis Theorem to obtain a low Martin-Löf random real and a hyperimmune-free
Martin-Löf random real, respectively. Among the results about the Turing degrees
of Martin-Löf random reals is the following theorem due to Kučera.

Theorem 2 [9] If a ≥ 0′, then a contains a Martin-Löf random real.

We now turn our attention to the reals that are “far from Martin-Löf random.”
As with most types of randomness, we can develop a notion of relative Martin-Löf
randomness. Such a reducibility can then be used to define a triviality notion.

Definition 5 [6] Let A and B be reals. We say that A ≤K B if (∃c ∈ ω)(∀n ∈
ω)[K(A�n) ≤ K(B�n)+ c]. We define A to be K-trivial if A ≤K 0ω ; i.e., if (∃c ∈
ω)(∀n ∈ ω)[K(A�n)≤ K(0n)+ c].

Another way in which a real A can be “far from Martin-Löf random” is if
relativizing a definition of Martin-Löf randomness to A generates the same class
of sets. There are two ways in which this has been done.

Definition 6 Let ML be the class of Martin-Löf-random sets. A real A is low
for Martin-Löf randomness if ML A = ML .

Definition 7 A real A is low for Martin-Löf tests if for every Martin-Löf test rel-
ative to A 〈UA

i 〉i∈ω , there is a Martin-Löf test 〈Vi〉i∈ω such that ∩i∈ωUA
i ⊆ ∩i∈ωVi.

We immediately note that the existence of a universal Martin-Löf test implies
that a real is low for Martin-Löf randomness if and only if it is low for Martin-Löf
tests. In fact, it has been shown by Nies that all three of these notions coincide for
Martin-Löf randomness.

Theorem 3 [12] If A is a real, then the following are equivalent.

1. A is low for Martin-Löf randomness.
2. A is low for Martin-Löf tests.
3. A is K-trivial.

Chaitin was the first to show that all K-trivial reals are ∆ 0
2 [2], and Downey,

Hirschfeldt, Nies, and Stephan showed that such reals cannot be high [6]. Later,
Nies proved the following theorem.

Theorem 4 [12] The K-trivials form a nonprincipal Σ 0
3 ideal in the ω-r.e. Turing

degrees. This ideal is generated by its r.e. members. Furthermore, each K-trivial
A is such that A′ ≡tt 0′ (A is superlow).

The three notions described above have been generalized to randomness no-
tions other than Martin-Löf randomness. We define low for R, low for R-tests,
and R-trivial for an arbitrary notion of randomness R and then discuss their con-
nections to each other.

Definition 8 A real A is low for R if R = RA.

4 Johanna N.Y. Franklin

Definition 9 A real A is low for R-tests if for every R-test relative to A 〈UA
i 〉i∈ω ,

there is a R-test 〈Vi〉i∈ω such that ∩i∈ωUA
i ⊆ ∩i∈ωVi.

Definition 10 A real A is R-trivial if A≤R 0ω , where≤R is R’s notion of relative
initial-segment complexity.

Clearly, if A is low for R-tests, it is low for R. However, it is not obvious that
either lowness notion is related to triviality.

3 Schnorr randomness, lowness, and triviality — Previous results

Schnorr randomness is a more effective version of Martin-Löf randomness. A
Schnorr test is simply an effectively given Martin-Löf test.

Definition 11 A Martin-Löf test is a Schnorr test if µ(Vi) = 1
2i for all i. A real A

is Schnorr random if for all Schnorr tests 〈Vi〉i∈ω , A 6∈ ∩i∈ωVi.

There is no universal Schnorr test. Therefore, we cannot use a universal Tur-
ing machine to define Schnorr randomness in terms of computational complexity.
Instead, we must quantify over all computable Turing machines.

Theorem 5 [5] A real A is Schnorr random if and only if (∀M comp.)(∃c ∈
ω)(∀n ∈ ω)[KM(A�n)≥ n− c].

It is clear that all Martin-Löf-random reals are also Schnorr random, but this
implication is not reversible. In fact, Nies, Stephan, and Terwijn showed that these
concepts are separable in the high degrees [13].

Downey, Griffiths, and Laforte developed the following characterization of
Schnorr triviality in [3]. They began by defining a notion of Schnorr reducibility.

Definition 12 [3] We say that A ≤Sch B if for every computable Turing machine
M, there is a computable Turing machine M′ and a constant c ∈ ω such that (∀n ∈
ω)[KM′(A�n)≤ KM(B�n)+c]. Therefore, a real A is Schnorr trivial (A≤Sch 0ω) if
the following statement holds.

(∀M comp.)(∃M′ comp.)(∃c ∈ ω)(∀n ∈ ω)[KM′(A�n)≤ KM(0n)+ c]

Downey, Griffiths, and Laforte have proved that there is a Turing complete
Schnorr trivial real, but that there is an r.e. degree that contains no Schnorr trivial
reals [3]. While this shows that the Schnorr trivial Turing degrees are not down-
ward closed, they also proved that the Schnorr trivial tt-degrees are downward
closed [3].

The work done with reals that are low for Schnorr to date has produced an en-
tirely degree-theoretic characterization. Here, we let Dn denote the nth canonical
finite set.

Definition 13 A set A is recursively traceable if there is a recursive, increasing,
unbounded function p : ω −→ ω as follows.

(∀ f ≤T A)(∃r : ω −→ ω rec.)(∀n ∈ ω)[f (n) ∈ Dr(n) and |Dr(n)| ≤ p(n)]

Schnorr trivial reals 5

In short, a real is recursively traceable if it is uniformly hyperimmune free. We
say that r is a recursive trace and that p is a bound for a recursive trace for every
f ≤T A.

The first result on reals that are low for Schnorr tests comes from Terwijn and
Zambella [15]. Later, Kjos-Hanssen, Nies, and Stephan used a similar technique
to demonstrate that, given Terwijn and Zambella’s result, the reals that are low for
Schnorr tests are precisely the reals that are low for Schnorr [8].

Theorem 6 [15] A set is recursively traceable if and only if it is low for Schnorr
tests.

Theorem 7 [8] A set is recursively traceable if and only if it is low for Schnorr
randomness.

Although the reals that are low for K are precisely those that are K-trivial,
being low for Schnorr is not equivalent to being Schnorr trivial. All reals that
are low for Schnorr are hyperimmune free, and there is a Turing complete Schnorr
trivial. This Schnorr trivial is clearly not hyperimmune free and is thus not Schnorr
low. The best that can be hoped for is that all Schnorr lows are Schnorr trivial. In
another publication, we will show that this is, in fact, the case [7].

In [15], Terwijn and Zambella also demonstrated that there is a perfect set of
Schnorr lows by showing that Miller and Martin’s construction in [11] produces
only recursively traceable sets.

4 Schnorr trivial reals: The basic construction

Theorem 8 Let h be a Turing degree such that h′ ≥T 0′′. Then h contains a
Schnorr trivial.

The proof of this theorem requires, for each such degree h, the construction of
a perfect binary tree T recursive in h such that every branch of T is Schnorr trivial
and every A ∈ 2<ω is encoded by some branch of T .

We note that Terwijn and Zambella’s perfect set of Schnorr lows is also a
perfect set of Schnorr trivials. However, since it consists entirely of hyperimmune-
free degrees, a new construction is necessary to prove Theorem 8.

Theorem 9 There is a perfect set of Schnorr trivials.

The following theorem will be necessary for the proof.

Theorem 10 (Kraft-Chaitin Theorem [1]) Let 〈di,σi〉i∈ω be a recursive sequence
with di ∈ ω and σi ∈ 2<ω for all i such that Σi

1
2di

≤ 1. (Such a sequence is
called a Kraft-Chaitin set, and each element of the sequence is called a Kraft-
Chaitin axiom.) Then there are strings τi and a prefix-free machine M such that
dom(M) = {τi | i ∈ ω} and for all i and j in ω ,

1. if i 6= j, then τi 6= τ j,
2. |τi|= di,
3. and M(τi) = σi.

6 Johanna N.Y. Franklin

The Kraft-Chaitin Theorem allows us to construct a prefix-free machine by
specifying only the lengths of the strings in the domain rather than the strings
themselves. We will therefore identify 〈τ,σ〉 with 〈d,σ〉 where d = |τ| through-
out.

Within the proof, we will consider an arbitrary computable machine. We in-
troduce the following terminology to simplify the construction.

Definition 14 Let M be a computable machine. We say that a real A is Schnorr
trivial with respect to M if the following condition holds.

(∃M′ comp.)(∃c ∈ ω)(∀n ∈ ω)[KM′(A�n)≤ KM(0n)+ c]

As demonstrated by Downey and Griffiths [5], we may consider only com-
putable machines with domain 1. In fact, it should be noted that for every com-
putable machine, there are infinitely many equivalent computable machines with
domain 1.

Proof (Theorem 9) We build a perfect tree of Schnorr trivials by constructing
a sequence of recursive trees Ti ⊇ Ti+1 such that each branch of Ti is Schnorr
trivial with respect to the computable machine Mi for a given listing 〈Mi〉i∈ω of
computable machines with domain 1.

We first illustrate the construction of the tree by describing the construction for
a single component. Let M be a computable machine with domain 1. We wish to
build a perfect tree T such that every branch B of T is Schnorr trivial with respect
to M.

Remark 1 Throughout the construction, note that, while we are building our T
within 2<ω , we could easily build it within any recursive tree.

We begin by dividing M’s domain into pieces of measure approximately 1
2k

for k ≥ 1. At stage k, we increase the height of the components of our tree up to
the height of the longest string in M appearing by the first stage at which µ(M)≥
1− 1

2k . We then assign appropriate complexities to all the strings in our tree of the
appropriate heights to build another computable machine M′ which demonstrates
the Schnorr triviality of all branches of T with respect to M thus far. Then we insert
a branching point in the tree in such a way as to ensure that the tree is perfect.

We will distinguish between the stages in the enumeration of the machine M
we are using and the stages in our own construction of the tree T and the machine
M′. Each stage k in our construction will correspond to the stages sk−1 < s ≤ sk
in the enumeration of M. We will refer to the latter as M-stages and to the former
simply as stages.

We define two sequences of natural numbers that are recursive in M and thus
simply recursive. The first is 〈sk〉k∈ω , where sk is the least M-stage s such that
µ(Ms)≥ 1− 1

2k . The second is 〈nk〉k∈ω , where nk = max{|σ | | σ ∈ Msk}.

k = 0: Clearly, s0 = 0 and n0 = 0. We define M′
0 = /0 and T0 = 2<ω .

k = 1: We consider each s for s0 < s ≤ s1. If an axiom 〈d,τ〉 enters M at M-stage
s, we add 〈d +1,1|τ|〉 to M′. Note that in particular, whenever an axiom of the
form 〈d,0n〉 enters M, the pair 〈d +1,1n〉 enters M′. After the M-stage s1, we

Schnorr trivial reals 7

define M′
1 to be the set of Kraft-Chaitin axioms enumerated into M′ thus far.

Now we let σ be the string 1n1 and define T1 = [σa0]∪ [σa1].
At this point, we have completely determined the tree up to height n1 +1, and
we have two branches at this height.

k > 1: We consider each s for sk−1 < s≤ sk. We let Σ = {σ1, . . . ,σk} be the set of
the longest elements of Tk−1 that have been completely determined. We will
call their length r. There are precisely k, as we create one new branching point
at each stage. Suppose 〈d,τ〉 enters M at M-stage s and define n = |τ|.
Case 1: n ≤ r. For all σ ∈ Tk−1 such that |σ |= n, we add 〈d+1,σ〉 to M′ at M-

stage s. There will be l many such σ for some l ≤ k, so we add 〈d +1,σ ′〉
to M′ an additional k− l times, where σ ′ is the leftmost σ ∈ Tk−1 such that
|σ |= n. Note that we have added l

2d+1 + k−l
2d+1 = k

2d+1 to µ(M′).
Case 2: n > r. For all σi ∈ Σ , we add 〈d +1,σi

a1n−r〉 to M′ at M-stage s. This
time there will be k many such σi, so we have added k

2d+1 to µ(M′).

This gives us M′
k. For each successive interval of 1

2k in µ(M), we add no more
than k

2k+1 to µ(M′). We may add less because our last step may have increased
the measure of M by slightly more than 1

2k−1 , leaving less for us to use at this
step.
Now we define Tk as follows. Let r′ = max{r,nk}.

Tk = [σϕ
a0]∪∪σ∈M′

k and |σ |=r′ [σ
a1]

where σϕ is the unique σ such that |σ | = r′, σ ∈ M′
k, and ϕ(σ) holds, where

ϕ(σ) is true if and only if σ extends the branch immediately to the left of
the branch extended with a 0 at the last stage, or, if there is no such branch,
the rightmost branch. Note that since σϕ is unique, the number of branches
increases by one in every stage. This condition also ensures that the tree is
perfect.

We can see that for all k ∈ ω , Tk+1 ⊆ Tk and M′
k ⊆ M′

k+1, so we can define
T = ∩k∈ω Tk and M′ = ∪k∈ω M′

k. T is clearly a recursive perfect tree.

Lemma 1 M′ is a Kraft-Chaitin set.

Proof We first note that, since our construction is recursive, the elements of M′

form an r.e. set.
Now we must show that µ(M′)≤ 1. We know that µ(M) = 1. During stage k,

if 〈d,σ〉 enters M, 〈d +1,τ〉 enters M′ for k many τ . Then, when 1
2k enters µ(M),

no more than k
2k+1 enters µ(M′). It may be slightly less than k

2k+1 if µ(Msk−1) > 1−
1

2k−1 . In this case, µ(Msk−1)−
1

2k−1 , and we can see that k−1
2 (µ(Msk−1)−

1
2k−1) will

enter µ(M′) instead of k
2 (µ(Msk−1)−

1
2k−1). Therefore, µ(M′)≤ Σk∈ω

k
2k+1 = 1.

Lemma 2 µ(M′) is a recursive real.

Proof During each stage k, approximately 1
2k enters µ(M). As mentioned in the

proof of Lemma 1, we may add less if µ(Msk−1) is strictly greater than 1− 1
2k−1 .

However, we can always calculate the amount of measure that has entered M by

8 Johanna N.Y. Franklin

the end of stage k recursively. Since we add k
2d+1 to M′ every time an axiom of the

form 〈d,τ〉 enters M, we can make a similar calculation for M′.
After stage k, no more than 1

2k will enter M, so no more than Σ j>k
j

2 j+1 can be
added to dom(M′). We can therefore use the inequality

|µ(M′)−µ(M′
k)| ≤ Σ j>k

j
2 j+1

to see that µ(M′) is a recursive real.

Therefore, by Lemmas 1 and 2 and the Kraft-Chaitin Theorem, we may take
M′ to be a computable Turing machine.

Lemma 3 M′ witnesses the Schnorr triviality of each branch of T with respect to
M.

Proof Let B ∈ [T], and let n ∈ ω . If KM(0n) = ∞, we automatically have KM′(B�
n)≤ KM(0n)+1. Otherwise, suppose that d is the least integer such that 〈d,0n〉 ∈
M, so d = KM(0n). Our construction guarantees that 〈d +1,σ〉 ∈M′ for each σ of
length n in our tree T , including B�n. Therefore, KM′(B�n)≤ d +1 = KM(0n)+1.
This is enough to show that the machine M′ and the constant 1 witness the Schnorr
triviality of B with respect to M.

Now that we have produced a perfect tree with all of its branches Schnorr
trivial with respect to a single computable machine M, we produce a perfect tree
with all of its branches Schnorr trivial (with respect to all computable machines)
using our listing 〈Mi〉i∈ω of computable machines with domain 1. For each i ∈ ω ,
we build a tree Ti and a machine M′

i such that Ti ⊇ Ti+1 and (∀A ∈ [Ti])(∀n ∈
ω)[KM′

i
(A�n)≤KMi(0

n)+(i+1)]. Once again, we define two sequences recursive
in Mi for each i. The first is 〈si,k〉k∈ω , where si,k is the least stage s such that
µ(Mi,s)≥ 1− 1

2k . The second is 〈ni,k〉k∈ω , where ni,k = max{|σ | | σ ∈Msi,k}. Once
again, both of these sequences are recursive.

We build T0 and M′
0 as previously. For i≥ 1, we build the tree Ti within Ti−1. As

mentioned in Remark 1, this is permissible since Ti−1 is recursive. This, however,
will require some slight modifications to the constructions of Ti and M′

i .
Since we are working within Ti−1 instead of 2<ω , there are two factors that

we must take into account. First, there may not be a branching point in Ti−1 at
precisely the height required by an ni,k. To compensate for this, we generate a new
recursive sequence 〈n′i,k〉k∈ω , where n′i,k is the height of the lowest branching point
in Ti−1 above ni,k, and we use this sequence rather than 〈ni,k〉k∈ω .

Second, we fix the tree through the first i branching points of Ti−1 to ensure
that the resulting tree is perfect. Until n′i,k is greater than the height of the ith
branching point in Ti−1 plus 1, we treat it as in Case 1 of the k > 1 case to ensure
that the branching points do not disappear when we take the intersection of the Tis
in the end. This means that we may have k+ i branching points at the end of stage
si,k instead of k, so instead of adding 〈d +1,σ〉 to M′

si,k for each appropriate σ , we
add 〈d + i + 1,σ〉. This ensures that the measure of the machine M′

i will still be
less than or equal to 1, since Σk∈ω

k+i
2k+i+1 ≤ 1 for any i.

Schnorr trivial reals 9

This requires other changes in the construction of the Tis as well. Whereas
before we could assume there were k branching points in our tree after stage k,
this time we cannot assume that there will be exactly k + i after stage k. This de-
pends entirely on Ti−1 and the sequence 〈ni,k〉k∈ω . Therefore, the set of the longest
elements already determined, Σ , may contain m ≤ k + i elements. To ensure that
µ(M′

i) is still a recursive real, we add (k+ i)−m additional copies of 〈d + i+1,σ ′〉
to M′

i , where σ ′ is the leftmost σ ∈ Tk−1 such that |σ |= r′ if Case 2 holds, just as
we did in Case 1 before.

Let T = ∩i∈ω Ti.

Lemma 4 T is a perfect tree, and each branch of it is Schnorr trivial with respect
to each machine Mi.

Proof For all k > i, Tk has the same ith branching point, so T is infinitely branch-
ing. Since we have used ϕ as a condition for determining the branching points, we
ensure that for all σ ∈ T , there are incomparable τ1 and τ2 extending σ . This is
sufficient to see that T is a perfect tree.

Let B ∈ [T], and let i ∈ ω and n ∈ ω . As before, if KMi(0
n) = ∞, we automat-

ically have KM′
i
(B�n) ≤ KMi(0

n) + (i + 1). Otherwise, there is a least number d
such that 〈d,0n〉 ∈ Mi. We will have put 〈d + i + 1,σ〉 into M′

i for all σ of length
n in T , including B�n. Therefore, KM′

i
(B�n)≤ d +(i +1) = KMi(0

n)+(i +1) for
each i, and each branch B is Schnorr trivial with respect to each Mi. It follows that
each branch B of T is Schnorr trivial.

Corollary 1 There are 2ℵ0 Schnorr trivials.

Remark 2 The tree T is recursive in 0′′, since the only nonrecursive component
of the construction is the list of computable machines with domain 1. This list is
recursive in 0′′.

Theorem 11 Every degree a ≥T 0′′ contains a Schnorr trivial.

Proof We build a tree T of Schnorr trivials recursively in 0′′ almost as before.
However, now we must build our trees Ti such that every A ∈ 2ω is coded by a
branch in T = ∩i∈ω Ti.

The first step is to modify the construction to produce a uniform tree. Rather
than branch once at each stage k ≥ 1 so there are k determined branching points at
the end of each stage k, we instead extend each string of the appropriate length by
both a 1 and a 0, and only at stages of the form 2k−1, giving us up to 2k branches
at the end of these particular stages. This will produce no more branching points
at the end of any given stage than permitted in the original argument, so the Kraft-
Chaitin Theorem will still apply.

However, we will need more than the simple uniformity of T to code every
real A ∈ 2ω within T . We begin by observing that in our previous construction,
a 0 would only appear in T at height n if there had been a branching point at
height n− 1 in some Ti. We will adapt this construction so that in our final tree
T , the 0s indicate the branching heights in T itself rather than simply in some Ti.
This will allow us to code each element of 2ω into a branch of T via the elements
immediately following these 0s.

10 Johanna N.Y. Franklin

Now we branch only at stages of the form 3k − 1, permitting us to have 3k

branches at the ends of these stages. At these stages, we extend each string of the
appropriate length by 11, 01, and 00 instead of simply 1 and 0 as before. Our goal
is to produce a final uniform tree T =∩i∈ω Ti in which 0s appear only at branching
points. When we fix the ith branching point in Tk for k > i, we prune the 11 branch,
leaving only the 01 and 00 branches. Later in the construction, if we must remove
a branching point, we prune the 01 and 00 branches to avoid introducing 0s into
the final tree at nonbranching points, leaving only the 11 branch. Any branching
point generated in this construction will eventually be preserved or removed, so T
will be a uniform tree with 2n branches at the nth branching level.

We can now see that every set in 2ω is coded by a branch in our tree T . Con-
sider a set A. We code A(n) by the direction we go at the (n+1)st branching point.
If A(n) = 0, we follow the left, or 00, branch. If A(n) = 1, we follow the right, or
01, branch. Let the branch of T obtained in this way from A be called T (A).

Lemma 5 If A ≥T 0′′, A ≡T T (A).

Proof Clearly, A ≥T T (A): by Remark 2, A computes the tree T since A ≥T 0′′,
and A can identify the proper path through T as described above.

Similarly, given T (A), we can find A(n) by looking for the (n + 1)st disjoint
pair beginning with a 0 and looking at the second bit in the pair. If it is a 1, then
A(n) = 1, and if it is a 0, then A(n) = 0. Then T (A)≥T A.

Therefore, if a ≥T 0′′, there is B ∈ [T] such that B ∈ a. We can see that all of
the M′

i s produced are computable Turing machines and that all B∈ [T] are Schnorr
trivial as in the original construction, so the theorem is proved.

Now that we have constructed a perfect tree of Schnorr trivial reals in 0′′ cod-
ing all A ∈ 2ω , we can adapt this construction to be recursive in any degree whose
jump is above 0′′. This will give us Theorem 8.

Proof (Proof of Theorem 8)
Let h be a Turing degree such that h′ ≥T 0′′, let H ∈ h, and let 〈Me〉e∈ω be a

list of all Turing machines. Since H ′ ≥T 0′′ and the statement “the Turing machine
Me is computable, and µ(Me) = 1” is recursive in 0′′, we may define the following
functional Ψ .

lim
t−→∞

Ψ(e, t,H) =
{

1 if Me is computable and µ(Me) = 1
0 else

We will use this functional to build a perfect tree of Schnorr trivials through a
sequence of approximations so that

(∀Me comp.)(∃M′
e,c comp.)(∀n ∈ ω)[KM′

e,c
(A�n)≤ KMe(0

n)+(c+1)]

and every B ∈ 2ω is coded by a branch of T .
The need for these approximations produces the main differences between this

construction and the previous ones. We cannot use a list of the computable Turing
machines with domain 1, so we must consider all Turing machines. For each Tur-
ing machine with domain < 1, there will be a c such that the measure of its domain
is < 1− 1

2c , so the construction of the corresponding tree as described above would

Schnorr trivial reals 11

halt prematurely. Therefore, we will not use M-stages in this construction. Since
we cannot identify the computable Turing machines with domain 1 with certainty
at any stage of the construction, we will build the trees simultaneously for all Me
rather than building a tree for each Me within the tree for Me−1 after the latter has
been entirely determined. This means that we may have parts of the tree that are
irrelevant since we will have built them based on a machine that turns out not to
be computable with domain 1. Furthermore, we might not begin to construct our
tree for Me before we begin to construct it for Mi for some i > e. This may create
extra branches in the tree for Me, but we will not know how many there will be at
any given point.

To compensate for this, we will build an M′
e,c for each Me and every c≥ e. The

constant c will account for c “extra” branches, just as the constant i did for M′
i in

the previous construction. Infinitely many such M′
e,c will work for each Me, but we

cannot identify them in advance.
We will activate a machine Me at a stage t when Ψ(e, t,H) = 1 and µ(Me) ≥

1− 1
23k−1

for a larger k than was possible the last time the machine was activated.
The first requirement allows us to only consider machines that appear to be com-
putable with domain 1, and the second allows us to build a uniform tree coding
every B ∈ 2ω as before.

s = 0: We let T0 = 2<ω and M′
e,c = /0 for all e and c. We then activate all Me for

stage 0.
s > 0: We compute Ψ(e,s,H) for all e ≤ s. If Ψ(e,s,H) = 0 for all such e, we

let Ts = Ts−1 and go on to stage s + 1. Otherwise, we list all e ≤ s such that
Ψ(e,s,H) = 1 in increasing order: e1 < e2 < · · · < en. For each ei, let kei,s be
the largest integer k for which µ(Mei,s)≥ 1− 1

23k−1
.

First, we consider e1. If ke1,s = ke1,t , where t is the most recent stage at which
Me1 was activated, we end stage s. Otherwise, we activate Me1 and list all k
such that 3ke1,t −1 < k ≤ 3ke1,s −1.
For each such k, we will construct our tree very much as before. Since we
know such stages will exist now, we can define sk to be the least stage s such
that µ(Ms) ≥ 1− 1

2k for these k. For each such k, we let Σ = {σ1, . . . ,σm} be
the set of the longest elements of Ts−1 that have already been determined. We
will call their length r.
We now construct the M′

e,cs and trees via the following procedure for each
such k.
If 〈d,τ〉 enters Me1 between states sk−1 and sk, we have the following two
cases. Let n = |τ|.
Case 1: n ≤ r. For all σ ∈ Tk−1 such that |σ | = n, we add 〈d + c + 1,σ〉 to

M′
e1,c for all c ≥ e1. There will be l many such σ for some l ≤ k, so we

add 〈d + c+1,σ ′〉 to M′
e1,c an additional (k + c)− l times, where σ ′ is the

leftmost σ in our tree such that |σ |= n.
Case 2: n > r. For all σi ∈ Σ , we add 〈d + c + 1,σi

a1n−r〉 to M′
e1,c for each

c≥ e1. This time there will be m such σi, so we add 〈d +c+1,σ1〉 to M′
e1,c

an additional (k + c)−m times.
Note that in both Case 1 and Case 2, we added k+c

2d+c+1 to µ(M′
e1,c) each time

we added 1
2d to µ(Me1).

12 Johanna N.Y. Franklin

If k is of the form 3 j −1 for some j, we let our tree be

T ′
s,1 = ∪σ∈M′

e1,sk
and |σ |=r′([σ

a11]∪ [σa01]∪ [σa00])

where r′ = max{{r}∪ {|σ | | σ ∈ M′
e1,sk

}}. Otherwise, we do nothing to the
tree.
After we have finished the above procedure for all k ≤ 3ke1,s −1, we continue
this process for each ei for i > 1 until we reach one for which kei,s = kei,t ,
where t is the most recent stage at which Mei was activated, or we reach an ei
whose kei,s requires us to branch higher in Ts,i−1 than the highest previously
determined branching point. In either of these cases, we end stage s. If neither
case holds, we activate Mei , augment the M′

ei,cs as before, and build the tree
Ts,i within Ts,i−1.
The construction of Ts,i must do two things. The first is to preserve certain
branching points to ensure that our final tree is perfect. To do this, when we
build our tree according to Me, we will require that the first e branching points
appearing in the construction of the M′

e,cs will be preserved. Therefore, for
these branching points, we will prune the 11 branches of the existing tree. The
second is to ensure that 0s only appear in the final tree at its branching points.
Therefore, if we must remove a branching point, we will prune the 01 and 00
branches at that height and leave only the 11 branch as before.
Let the last tree produced before the end of the stage be Ts.

Let T = ∩s∈ω Ts.

Lemma 6 For every e ∈ ω , there is a c′ ∈ ω such that M′
e,c is a Kraft-Chaitin set

for all c ≥ c′.

Proof Let e∈ω be given. By the definition of Ψ , there is an s such that for all t ≥ s
and i≤ e, Ψ(i, t,H) = 1 if Mi is computable with domain 1 and Ψ(i, t,H) = 0 oth-
erwise. After this stage s, the construction of M′

e will be identical to that in the pre-
vious construction. There may be more than k + e branches after µ(Me)≥ 1− 1

2k ,
but this number will now increase at the same rate as it did before. Therefore, some
c′ ≥ e will reflect this number of branches. This is enough to see that µ(M′

e,c)≤ 1
for all c≥ c′, and since µ(M′

e,c) is a recursive real for all c, M′
e,c is a Kraft-Chaitin

set for all c ≥ c′.

Lemma 7 Suppose Me is computable. Then if M′
e,c is a Kraft-Chaitin set, M′

e,c is
computable as well.

Proof This proof proceeds in the same manner as the proof of Claim 2.

Lemma 8 Every branch A of T is Schnorr trivial.

Proof Let A ∈ [T], and let Me be an arbitrary computable machine with domain 1.
We will show that (∃M′

e,c comp.)(∀n ∈ω)[KM′
e,c

(A�n)≤ KMe(0
n)+(c+1)]. Let c′

be as in Claim 6, and let n ∈ ω be given.
If KMe(0

n) = ∞, it is clear that KM′
e,c′

(A�n)≤KMe(0
n)+(c′+1). Otherwise, let

d be the least integer such that 〈d,0n〉 enters Me. Then d = KMe(0
n). When 〈d,0n〉

Schnorr trivial reals 13

entered Me, 〈d + c′+1,σ〉 entered M′
e,c′ for all σ of length n in T , including A�n.

Therefore, KM′
e,c′

(A�n) ≤ d +(c′ + 1) = KMe(0
n)+ (c′ + 1), and M′

e,c′ and c′ + 1
will witness the Schnorr triviality of A with respect to Me.

Therefore, we will have KM′
e,c′

(A�n) ≤ KMe(0
n)+ (c′ + 1) for all n, and M′

e,c′

and the constant c′+1 will witness the Schnorr triviality of A with respect to Me.

Now we can code every B ∈ 2ω by a branch in T . We code B(n) by the branch
we choose at the (n + 1)st branching point as before. If B(n) = 0, we choose the
left, or 00, branch. If B(n) = 1, we choose the right, or 01, branch. We call the
branch chosen in this manner T (B).

Claim If A ≥T H, A ≡T T (A).

Proof This proof is identical to that of Claim 5.

Since T is a perfect tree of Schnorr trivial reals, T is recursive in h, and every
B ∈ 2ω is coded by a branch of T , every degree ≥T h contains a Schnorr trivial
real. Since h is an arbitrary degree whose jump is≥T 0′′, we have proved Theorem
8.

It should be mentioned that since T is a strongly uniform tree, T ≤T B for any
B ∈ [T]. Therefore, we have actually produced a recursively pointed tree.

As previously noted, the Schnorr trivial Turing degrees are not closed down-
wards [3]. Theorem 8 provides additional evidence that the Turing degrees are not
the appropriate framework in which to consider Schnorr triviality, for it suggests
that an arbitrarily computationally strong real may have minimal initial-segment
complexity.

The truth table degrees seem to be a much more appropriate framework for
Schnorr triviality. Downey, Griffiths, and Laforte have shown that the Schnorr triv-
ial reals are closed downwards in this structure [3]. Furthermore, since the reals
that are low for Martin-Löf randomness are precisely those that are K-trivial, one
might naturally expect the same relationship to exist for the reals which are low
for Schnorr and Schnorr trivial. It can be seen from results of Kjos-Hanssen, Nies,
and Stephan and Downey, Griffiths, and Laforte that this is not so [8,3]. However,
I have shown that if we restrict our attention to the hyperimmune-free Turing de-
grees, the Schnorr trivial reals are precisely those that are low for Schnorr [7]. In
the hyperimmune-free degrees, the Turing degrees and truth table degrees coin-
cide. This result, when considered with Downey, Griffiths, and Laforte’s, suggests
that it is more natural to consider Schnorr triviality in the context of the truth table
degrees.

Acknowledgements I would like to thank Theodore A. Slaman, my advisor, and Leo Harring-
ton for many useful conversations and suggestions.

References

1. Chaitin, G.J.: A theory of program size formally identical to information theory. J. Assoc.
Comput. Mach. 22, 329–340 (1975)

14 Johanna N.Y. Franklin

2. Chaitin, G.J.: Algorithmic information theory. IBM J. Res. Develop. 21(4), 350–359 (1977)
3. Downey, R., Griffiths, E., Laforte, G.: On Schnorr and computable randomness, martin-

gales, and machines. Math. Log. Q. 50(6), 613–627 (2004)
4. Downey, R., Hirschfeldt, D.R., Nies, A., Terwijn, S.A.: Calibrating randomness. Bull. Sym-

bolic Logic 12(3), 411–491 (2006)
5. Downey, R.G., Griffiths, E.J.: Schnorr randomness. J. Symbolic Logic 69(2), 533–554

(2004)
6. Downey, R.G., Hirschfeldt, D.R., Nies, A., Stephan, F.: Trivial reals. In: Proceedings of

the 7th and 8th Asian Logic Conferences, pp. 103–131. Singapore Univ. Press, Singapore
(2003)

7. Franklin, J.N.Y.: Hyperimmune-free degrees and Schnorr triviality. In progress
8. Kjos-Hanssen, B., Nies, A., Stephan, F.: Lowness for the class of Schnorr random reals.

SIAM J. Comput. 35(3), 647–657 (electronic) (2005)
9. Kučera, A.: Measure, Π 0

1 -classes and complete extensions of PA. In: Recursion theory week
(Oberwolfach, 1984), Lecture Notes in Math., vol. 1141, pp. 245–259. Springer, Berlin
(1985)

10. Martin-Löf, P.: The definition of random sequences. Information and Control 9, 602–619
(1966)

11. Miller, W., Martin, D.A.: The degrees of hyperimmune sets. Z. Math. Logik Grundlagen
Math. 14, 159–166 (1968)

12. Nies, A.: Lowness properties and randomness. Adv. Math. 197(1), 274–305 (2005)
13. Nies, A., Stephan, F., Terwijn, S.A.: Randomness, relativization and Turing degrees. J.

Symbolic Logic 70(2), 515–535 (2005)
14. Schnorr, C.P.: A unified approach to the definition of random sequences. Math. Systems

Theory 5, 246–258 (1971)
15. Terwijn, S.A., Zambella, D.: Computational randomness and lowness. J. Symbolic Logic

66(3), 1199–1205 (2001)

