
STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY

JOHANNA N.Y. FRANKLIN

Abstract. We survey the current results about degrees of categoricity and the degrees that are
low for isomorphism as well as the proof techniques used in the constructions of elements of each
of these classes. We conclude with an analysis of these classes, what we may deduce about them
given the sorts of proof techniques used in each case, and a discussion of future lines of inquiry.

1. Introduction

The question of whether a computable isomorphism between two computable structures exists
was first discussed in computable model theory sixty years ago [17]. Later, this question was
generalized to the question of whether an isomorphism of a given Turing degree exists between two
computable structures. There has been a great deal of recent work on Turing degrees that have
been shown to be very strong with respect to computing isomorphisms between structures and
those that have been shown to be very weak. The first such class of degrees is called the degrees of
categoricity ; degrees in the second such class are called low for isomorphism. Both of these classes
of degrees have proven to be difficult to characterize completely; in fact, no full characterization
exists for either class. In this paper, we will synthesize the work on these topics and the proof
techniques involved, present some open questions, and discuss possible approaches to the subject.

1.1. Terminology. We begin with a discussion of the most relevant definitions; other terms will
be defined as necessary throughout the paper. We assume the reader is familiar with computability
theory in general and computable structure theory in particular; [29, 30, 34] and [18] are useful
references for these subjects, respectively. We will use the notation from Ash and Knight [2]
when we discuss the hyperarithmetic hierarchy (as do the authors of all the papers concerning this
hierarchy that we survey), and we suggest [31] as a general reference.

The most fundamental concept in this paper is that of an isomorphism relative to a particular
Turing degree d.

Definition 1.1. Given a Turing degree d and computable structures A and B, we say that A is
d-computably isomorphic to B (which we will write A ∼=d B) if there is an isomorphism between
A and B that is computable from d. If d = 0, we say that A is computably isomorphic to B and
write A ∼=∆0

1
B.

This idea is then used to define the concept of computable categoricity relative to a given Turing
degree d.

Definition 1.2. A computable structure A is d-computably categorical if, for every computable
structure B that is classically isomorphic to A, we have A ∼=d B.

Date: July 7, 2016.
The author would like to thank the editors of this Festschrift for the invitation to contribute.

1

2 FRANKLIN

Now we can define the central concepts in this paper: degrees of categoricity and lowness for
isomorphism.

Definition 1.3. [11] A Turing degree d is a degree of categoricity if there is a computable structure
A such that A is c-computably categorical if and only if c ≥T d. This degree d is furthermore a
strong degree of categoricity if there is a computable structure A with computable copies A1 and
A2 such that A has degree of categoricity d and every isomorphism from A1 to A2 computes d.

In short, a degree is a degree of categoricity if it is the least degree that, for some computable
structure, can compute an isomorphism from that structure to any classically isomorphic com-
putable copy of itself. This means that we can think of it as calibrating the complexity of that
computable structure in some way. Furthermore, a degree is a strong degree of categoricity if it not
only computes such isomorphisms but can be computed by any isomorphism from one copy of a
particular computable structure to another. We can thus say that a (strong) degree of categoricity
is, in some way, a very strong degree: it is guaranteed to have a certain level of computational
power for some computable structure.

On the other hand, a degree that is low for isomorphism is a degree that is very weak indeed for
any pair of computable structures:

Definition 1.4. [14] A Turing degree d is low for isomorphism if for every pair of computable
structures A and B, A ∼=d B if and only if A ∼=∆0

1
B.

The word low is used in this definition as it has been used in computability theory since the
1970s: a degree d is generally called low for a relativizable class C if, when it is used as an oracle,
the new, relativized class is no different than the original, unrelativized one (that is, when CD = C
for D ∈ d). This notion, first used in computability theory by Soare in [33], has appeared in almost
every context in computability theory: degree theory [33], learning theory [32], and, more recently,
algorithmic randomness [7, 13, 27]. Franklin and Solomon’s paper introduced this concept into
computable structure theory for the first time [14].

These notions appear to be entirely incompatible. Nontrivial degrees of categoricity possess some
additional information required to compute an isomorphism for some structure, while degrees that
are low for isomorphism have none. Clearly, the only degree that satisfies both of these conditions
is 0.

At this point, there are several natural questions to ask. What sorts of closure do these classes
possess? It is clear from the definition that the degrees that are low for isomorphism are closed
downwards, but do they form an ideal? Are these degrees compatible or incompatible with natural
classes of degrees, such as the hyperimmune-free degrees, minimal degrees, or low degrees?

Examples of degrees of categoricity and degrees that are low for isomorphism have been found,
but a full characterization has been elusive for each. In this paper, we hope to present some of
the constructions of these degrees and to analyze these constructions as well as to present some
more general metainformation about both kinds and consider reasons that each type of degree is
so difficult to characterize. We discuss degrees of categoricity in Section 2 and degrees that are low
for isomorphism in Section 3, and we include an analysis of these classes in Section 4.

2. Degrees of categoricity

As mentioned, the concept of a degree of categoricity was first defined by Fokina, Kalimullin, and
R. Miller in [11]. In this paper, they demonstrated that certain degrees were degrees of categoricity,

STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY 3

showed that there were only countably many strong degrees of categoricity, and considered the
question of degrees of categoricity for particular classes of structures. Csima, Franklin, and Shore
then extended their results through the hyperarithmetic hierarchy and proved that there were only
countably many degrees of categoricity [4] and, more recently, Csima and Harrison-Trainor showed
that the degrees of categoricity of “natural” structures are very limited indeed [5].

2.1. Examples of degrees of categoricity. All of the results in this section are centered around
the Ershov hierarchy [8, 9, 10]. Fokina, Kalimullin, and R. Miller’s primary results can be stated
as the following theorem:

Theorem 2.1. [11] If d is a Turing degree that is c.e. or d.c.e. in 0(m) and 0(m) ≤T d for some

m ∈ ω, then d is a strong degree of categoricity. Furthermore, 0(ω) is a strong degree of categoricity.

We outline their constructions in increasing order of complexity. They begin by simply showing
that a c.e. degree d is a degree of categoricity. To do so, they fix a c.e. Turing degree d, a c.e. set
We inside it, and a computable injective function h with range We. From this, they construct a
structure B witnessing that d is a degree of categoricity.
B is a directed graph with two constant elements, c and d, and is constructed as follows. Four

elements, α, β, γ, and δ, are dedicated to be the “origin” nodes, and the sequences x0, x1, . . . , xi, . . .
and y0, y1, . . . , yi, . . . are the “target” nodes. (There is also a set of “witness” nodes {ui}i∈ω, but
those do not appear as elements of the graph and we will ignore them in this sketch.) We declare
that cB = γ and dB = δ. At stage 0, B only has edges from β to every yi and from δ to every xi.

When a number i enters We, we add the following additional edges to our graph:

• an edge from α to xi,
• an edge from β to xi,
• an edge from γ to yi, and
• an edge from δ to yi.

At the end of our construction, we see that if i ∈ We, then there are edges from α, β, and δ
to xi and edges from γ, δ, and β to yi. Therefore, any automorphism of B that swaps xi and yi
must swap α and γ, and it may either fix β and δ or swap them. Furthermore, if i 6∈ We, then
the only edge to xi comes from δ and the only edge to yi comes from β. This means that if an
automorphism of B swaps xi and yi, then it must swap β and δ as well but its behavior on α and
γ does not matter.

We first argue that d is a degree of categoricity for B. Suppose we have another computable
structure A that is classically isomorphic to B and we wish to build an isomorphism g from B to
A computable in d. We first note that we can identify g(γ) as cA and g(δ) as dA. Since we defined
the xis and yis as sequences, we can identify the pair g(xi) and g(yi) for each i. Now we use We

as our oracle to determine which is which: if i ∈ We, then the element that is connected to cA is
g(yi); if i 6∈We, then the element that is connected to dA is g(xi).

Furthermore, we can prove that d is a strong degree of categoricity for B by exhibiting a structure
A such that any isomorphism between B and A can compute We. We define A in this case to be

identical to B save for the choice of constants: we set cA = α̂ and dA = δ̂ (where α̂ and δ̂ are
the A-equivalents of α and δ). There is exactly one isomorphism from B to A: the isomorphism
that swaps the xis that are connected to α with the corresponding yis that are connected to γ and
preserves the rest. Knowledge of this isomorphism clearly allows one to determine We.

4 FRANKLIN

The proof that every d.c.e. degree is a degree of categoricity is slightly more complicated. Again,
we fix a d.c.e. degree d and a d.c.e. set A−B in d, where A and B are c.e. sets such that B ⊆ A.
We construct a directed graph once more. However, this time we will have a single sequence
x0, x1, . . . , xi, . . . where the ith element is connected to the four points ai, bi, ci, and di and these
four points form a square at stage 0: there are arrows from ai to bi, bi to ci, ci to di, and di to ai.

We now choose our witnessing computable structure B to be the substructure of the directed
graph above with all the xis, cis, and dis, but only the ais for i ∈ A and only the bis for i ∈ B.
Since B’s universe is c.e., we can proceed as though B is computable.

Now suppose that A is a computable structure that is isomorphic to B. To compute an iso-
morphism g from B to A, we first identify g(xi) for each i. If i ∈ D, then there is no bi, and we
can uniquely define g(ai), g(bi), and g(ci). If i 6∈ D, then either we have to identify g(ai), g(bi),
g(ci), and g(di) (if i never entered D) or only g(ci), and g(di) (if i entered and then exited D).
In any case, we define g(ci), and g(di) as soon as we find two elements that are candidates for
them; if we later determine that i ∈ A and therefore i ∈ B as well, we can extend the isomorphism
appropriately.

To prove that d is actually a strong degree of categoricity, we show that an isomorphism exists
between the structure previously described and the structure A, where A is the substructure of the
original directed graph with all the xis, cis, and di,s but only the ais for i ∈ B and only the bis for
i ∈ A. Suppose we have such an isomorphism. Then, for each i ∈ ω, we can see that i ∈ D if and
only if i 6∈ B and f(ci) 6= ci.

Both of the results above can be seen to relativize to degrees c.e. and d.c.e. in and above 0(m)

for any m ∈ ω using Marker’s construction from [24], so to fully prove Theorem 2.1, we only need

show that there is a computable structure whose degree of categoricity is 0(ω). As is logical for a
limit case, this structure is simply the cardinal sum of the computable structures constructed to
show that the degrees 0(n) are degrees of categoricity for all n ∈ ω.

Fokina, Kalimullin, and R. Miller’s paper did not treat the 3-c.e. case, which remains unsolved to
this writing. Let us discuss briefly why it is far more difficult than the d.c.e. case. In the d.c.e. case,
there are three possible scenarios for each i ∈ ω: i is in D, which means that all of ai, ci, and di are
in the first structure; i never entered D, which means that ai, bi, ci, and di are in the structure, or
i entered and then exited D, which means that only ci and di are in the structure. Suppose that,
in addition to these scenarios, we also had to deal with the case in which i had entered, exited,
and then entered D again. This would mean that there would have to be two subcases for each of
i ∈ D and i 6∈ D. So far, no way has been found to code information into a structure in such a way
that the first and third “versions” can be made isomorphic (the cases where i 6∈ D), the second
and fourth “versions” can also be made isomorphic (the cases where i ∈ D), and we can transition
from each version to the next in a computable way.

One of the questions asked in [11] was whether or not their construction could be extended to
higher hyperarithmetic degrees. This was answered by Csima, Franklin, and Shore in [4], where
they proved the following result.

Theorem 2.2. If α is a computable ordinal, then 0(α) is a strong degree of categoricity. If, in
addition, α is a successor ordinal, then every degree that is c.e. or d.c.e. in and above 0(α) is a
strong degree of categoricity.

STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY 5

Once again, these constructions use directed graphs. The authors use Hirschfeldt and White’s
“back-and-forth trees” in their construction [22], which are computable subtrees of ω<ω with no
infinite paths. We outline their construction below.

They fix a system of notation for ordinals as follows: 1 denotes the ordinal 0, 2a denotes the
ordinal α+1 when a denotes α, and 3·5e denotes a limit ordinal λ under certain technical conditions,
including the totality of ϕe. This makes it possible to define two structures, Aa and Ea, for each
notation a using transfinite recursion. A1 is a single node, and E1 is a single root node that has
infinitely many children, all of which are childless. If a represents the successor of a successor
ordinal represented by b (so a = 2b), then Aa consists of a single root node with infinitely many
copies of Eb attached, and Ea consists of a single root node with infinitely many copies of both Ab
and Eb attached. Finally, if a is the successor of a limit ordinal coded by e (so a = 23·5e), we must
first define auxiliary trees Le,k for every k ∈ ω as well as a structure Le,∞ as follows:

• Le,k consists of exactly one copy of Aϕe(n) for all n ≤ k and exactly one copy of Eϕe(n) for
all n > k, and
• Le,∞ consists of exactly one copy of Aϕe(n) for every n ∈ ω.

Now we can define Aa to consist of a root node with infinitely many copies of Le,k for every k ∈ ω
and Ea to consist of a root node with infinitely many copies of Le,k for each k ∈ ω and infinitely
many copies of Le,∞. These procedures will always give us a computable tree.

We note that Aa can always be converted to Ea just by adding infinitely copies of either the
appropriate Eb or the appropriate Le,∞. This will be essential for our construction.

Now, in preparation for building the structures that witness the existence of the degrees of
categoricity previously mentioned, we make note of several technical facts about these structures.
A lemma from [22] allows us to see that, given an ordinal α and a Σα predicate P , for every notation
a for α, there is a sequence of trees Tn that is uniformly computable from a and a Σα index for P
such that for all n, Tn is isomorphic to one of Ea, Aa, Le,k, or Le,∞ depending on whether P (n)
holds and whether α is a successor or limit ordinal. We can also define the rank of a back-and-forth
limb of a tree (S is a limb of T if S ⊆ T and is closed under the “child” relation within T , and
S is a back-and-forth limb if it is isomorphic to one of our back-and-forth trees) and then use this
rank to associate a natural complexity with a back-and-forth tree based on its isomorphism type.
This will let us prove that 0(α) can compute an isomorphism between two back-and-forth limbs of
different computable trees as long as both limbs have rank less than a (the notation for α) and are
classically isomorphic, and this computation is uniform in the roots for the limbs.

Now we can prove that for every α, there is a computable structure Sa with strong degree of

categoricity 0(α). For each notation, we construct a “standard” copy of Sa and a “hard” copy Ŝa.
All of these structures consist of infinitely many disjoint copies of these back-and-forth trees. We
present the case for a = 2 (the notation for 0′) here and then describe the other cases briefly.

The “standard” copy, S2, will consist of infinitely many disjoint copies of A1 and E1. The set of
edges in this copy is {(〈2n, 0〉, 〈2n, k〉) | k > 0}. The elements in the odd columns are not connected
to any other elements and are thus each isomorphic to A1; each even column is isomorphic to E1

with 〈2n, 0〉 as the root node.

Now we use an approximation {Ks}s∈ω to 0′ to build the “hard” copy Ŝ2. The set of edges of
this copy is defined to be {(〈2n, 0〉, 〈2n, t〉) | n ∈ Kt}. In this case, if n ∈ 0′, a subset of the nth even
column will be isomorphic to E1, and all of the other elements will form substructures isomorphic
to A1. Clearly, if one is given an isomorphism between the “standard” and “hard” copies, 0′ can

6 FRANKLIN

be computed by determining which of the odd columns contain copies of A1, and if one is given
any two computable copies of S2, then the only questions that need to be answered to compute an
isomorphism between them are Σ0

1 and Π0
1, which 0′ can answer.

For an ordinal β that is the successor of a successor ordinal α with notation a, our structure
will consist of infinitely many disjoint copies of Aa and Ea. The “standard” copy will code the
Eas in the even columns and the Aas in the odd columns; the “hard” copy will code the Eas in
the columns corresponding to those n in the jump of 0(α) and the Aas in the other columns. The
basic argument is the one given above, though with more bookkeeping: we must show that the
root nodes of all the connected components of each structure and the back-and-forth indices of
their limbs can be computed in this jump. This allows us to define a bijection between the root
nodes in each structure that preserves back-and-forth indices, which is all we need to compute an
isomorphism between the standard copy and an arbitrary computable copy.

For an ordinal α that is a limit ordinal coded by e, we construct the “standard” copy by coding
a copy of Eϕe(n) in the 〈k, n〉th column if k is even and a copy of Aϕe(n) in the 〈k, n〉th column if k
is odd. In the “hard” copy, we determine where to code copies of Eϕe(n) and Aϕe(n) depending on

whether n is in 0(α).
Finally, for an ordinal that is the successor of a limit ordinal coded by e, our structure will consist

of infinitely many disjoint copies of Le,∞ and Le,k for all k ∈ ω. We construct the “standard” copy

by coding a copy of Le,k in the 〈n, k, 0〉th column if n is even and a copy of Le,∞ in it otherwise.
The fact that we can compute a sequence of trees of the form Ea, Aa, Le,k, and Le,∞ as previously
described lets us construct a “hard” copy that codes information about our ordinal. Since all the
connected components are back-and-forth trees with rank below the ordinal we are considering,
the corresponding Turing degree is enough to compute an isomorphism between these copies, and
we can argue as before that it is enough to compute an isomorphism between any two computable
copies of this structure.

We now move from the c.e. case to the d.c.e. case and argue that any degree d d.c.e. in and above
0(α) for a computable successor ordinal α must be a strong degree of categoricity. Once again, two

different structures, G and Ĝ are constructed, the former the “standard” copy and the latter the
“hard” copy. Let D ∈ d witness that d is d.c.e. in and above 0(α). We will use the same general
technique as in [11]: information is coded into 4-cycles containing the nodes a, b, c, and d based
on whether n enters D and then leaves it, enters and never leaves, or never enters it at all. This
information is coded by attaching either Aαs or Eαs to each of the nodes in the 4-cycle. The nodes

a and c are treated identically in G and Ĝ, but the roles of b and d are swapped, and the choices of
Aα and Eα are made in such a way to ensure that if n is in our set, we can create an isomorphism
regardless of the way in which it entered. Furthermore, to ensure that any isomorphism between

these structures can compute d, we add a 3-cycle to each of G and Ĝ. In G, each node in this 3-cycle

will have a copy of the “standard” structure we built previously attached to it, and Ĝ will have a
copy of the “hard” structure we built previously attached to it.

The other primary example of degrees of categoricity to date comes from Csima and Harrison-
Trainor [5]. In this paper, they consider computable structures on cones in the Turing degrees.
They begin by defining a relativized version of degrees of categoricity:

Definition 2.3. [5] A structure A has degree of categoricity d relative to c if d is the least degree
that can compute an isomorphism between any two c-computable copies of A. If there are also two

STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY 7

c-computable copies of A such that for every isomorphism f between them, f ⊕ c ≥T d, then A
has strong degree of categoricity d relative to c.

Definition 2.4. A structure A has a (strong) degree of categoricity on a cone if there is some d
such that for every c ≥T d, A has a (strong) degree of categoricity relative to c. Furthermore, we

say that a structure A has a (strong) degree of categoricity 0(α) on a cone if there is some d such

that for every c ≥T d, A has a (strong) degree of categoricity c(α) relative to c.

Their main theorem is as follows:

Theorem 2.5. [5] Suppose that A is a computable structure. Then on a cone, A has a strong

degree of categoricity, and this degree is 0(α), where α is the least computable ordinal such that A
is 0(α)-computably categorical on a cone.

The general proof of this theorem involves a version of Ash’s metatheorem [2]: Montalbán recently
developed a variant on it for successor ordinals [25], and Csima and Harrison-Trainor expanded
his variant to include limit ordinals. Here we will only sketch their proof for structures that are
0′-computably categorical on a cone due to the complexity of the general proof.

We begin by supposing that A is not computably categorical on any cone and choose a degree
e that can compute A and a Scott family for A with certain properties and that satisfies some
technical conditions. We let d ≥T e, and then we choose c to be c.e. in and above d and choose a
C ∈ c and take a d-computable approximation to it. This allows us to build our B and a sequence
〈fs〉 of partial isomorphisms computably in d. Thus, the limit of the partial isomorphisms, f , will
be a C-computable isomorphism between B and A. This means that c will compute an isomorphism
between B and A, and we can further use g ⊕ d to compute c for every isomorphism f between A
and B.

We then use Knight’s theorem on the upwards closure of degree spectra from [23] to show that
every isomorphism between B and A computes c instead of simply that g ⊕ d computes c for
every isomorphism f between A and B. This lets us see that a structure cannot have a degree of
categoricity properly between 0 and 0′ on a cone.

Csima and Harrison-Trainor also prove the following:

Theorem 2.6. [5] Suppose A is a countable structure. Then, on a cone, if A is ∆0
α-categorical,

then for every copy B of A, there is a degree d that is Σ0
α−1 in B if α is a successor ordinal and

∆0
α in B if α is a limit ordinal such that d computes an isomorphism between A and B and all

isomorphisms between A and B compute d.

This theorem is proved using a more technical result. We begin by considering a structure A and
a degree c such that A is c-computable and ∆0

α-categorical on the cone above c. We can assume
that A has a c.e. Scott family S of computable Σα formulas relative to c with a certain collection
of properties. Then, given a copy B of A, we can consider the set S(B) of pairs (b̄, ϕ) such that
ϕ(b̄) is true in B and ϕ ∈ S. Our degree d will be the degree of S(B)⊕ B ⊕ c. We then show that
there is an isomorphism f : A ∼= B such that f ⊕ c ≡T d and then, using a set closely related to
S(B), use the properties associated with this particular Scott family to show that d is the desired
degree.

Csima and Harrison-Trainor then proceed to argue that this means that the only natural degrees
of categoricity are these degrees: arguments concerning structures found naturally in mathematics

8 FRANKLIN

tend to relativize, and therefore any natural structure has a given property exactly if it has that
property on a cone.

We can see that the key to all of these constructions is the ability to approximate a set in the
degree in question well enough to construct a computable structure that encodes it.

2.2. Bounding this class from above. In [1], Anderson and Csima turned their attention to
classes of degrees that are incompatible with the degrees of categoricity. Their first result may be
summarized as follows.

Theorem 2.7. [1] There is a degree below 0′′ that is not a degree of categoricity; in fact, there is
a Σ0

2 degree that is not a degree of categoricity.

The proof that 0′′ computes a degree that is not a degree of categoricity actually shows that 0′′

computes a degree that is low for isomorphism. It is quite straightforward: we simply build a set X
by finite extensions using a 0′′ oracle. At stage 〈`,m, k〉+1, we first extend our finite approximation
to ensure that our set is not computable by ϕ〈`,m,k〉 using 0′. We then use 0′ to determine whether
our approximation can be extended to a string σ such that Φσ

` is not a partial isomorphism from
Am to Ak; if so, that extension is our new approximation. If not, we use 0′′ to check to see if we can
extend our approximation to a string σ such that Φσ

` is either not total or not surjective; if so, that
extension is our new approximation. Otherwise, we know that any extension of our approximation
can be extended to an isomorphism from Am to Ak, so we can find a computable isomorphism from
Am to Ak and take our new approximation to be the current one.

To compute such a degree that is Σ0
2, we simply build our set D to be left-c.e. in 0′. For each

tuple 〈e, i, j〉, we satisfy the requirement that if ΦD
e is an isomorphism from Ai to Aj , then there is

a computable isomorphism between these structures as well (so, once again, we compute a degree
that is low for isomorphism). At each stage, we consider the highest priority requirement (suppose
it is the requirement for the tuple 〈e, i, j〉) and ask if there is a string σ � 1 such that Φσ

e is not
a partial isomorphism from Ai to Aj ; if so, we do it and satisfy our requirement. If not, we ask
at successive stages whether we can find a string σ � 1 that can always be extended to a longer
partial map from ω to ω. If the answer is always yes, then we can use that functional Φe and get a
computable isomorphism from Ai to Aj ; if the answer is ever no, we choose a new approximation
witnessing this. This is left-c.e. in 0′ and may injure lower-priority requirements.

Anderson and Csima also demonstrated that the degrees of categoricity are disjoint from the
hyperimmune-free degrees:

Theorem 2.8. [1] No noncomputable hyperimmune-free degree is a degree of categoricity.

This proof proceeds by contradiction. We assume that a structure A witnesses that d is a
hyperimmune-free degree of categoricity and that d computes an f witnessing that A ∼= B. Since d
is hyperimmune free, there must be a computable function h that dominates both f and f−1. This
function h is then used to build an infinite computably bounded tree T ⊆ ω<ω whose infinite paths
code isomorphisms between A and B. One of these paths is guaranteed to be computable from 0′,
so there is g ≤T 0′ witnessing that A ∼= B. This means that A is 0′-computably categorical and
thus that d ≤T 0′, which is impossible since d is hyperimmune free.

Anderson and Csima also proved that if A is a set and G is Cohen 2-generic in A or if G is
Cohen 2-generic relative to a perfect tree, then the degree of G⊕A is not a degree of categoricity.
We note that in fact they proved here that all such degrees are low for isomorphism and that this
proof is very similar to the proof of Theorem 2.7, so we reserve a comparable proof until Section 3.

STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY 9

We can further restrict the Turing degrees that may be degrees of categoricity as follows. Fokina,
Kalimullin, and R. Miller proved in [11] that every strong degree of categoricity is hyperarithmetic
using the Effective Perfect Set Theorem [26]. Csima, Franklin, and Shore proved later in [4] that
every degree of categoricity, strong or not, is hyperarithmetic. Their proof requires Kreisel’s Basis
Theorem [31]. To prove this, we begin by taking an arbitrary degree d that is not hyperarithmetic
and an arbitrary computable structure A and listing all the computable copies of A: A0,A1,
The class of isomorphisms between A0 and A1 is Π0

2 and thus Σ1
1, and by Kreisel’s Basis Theorem,

there is an isomorphism f1 such that d 6≤h f1. In fact, we can relativize Kreisel’s Basis Theorem
to find a sequence of isomorphisms f0, f1, . . . such that fi is an isomorphism between A0 and Ai
and d 6≤h f1 ⊕ . . . ⊕ fi for each i. We take an exact pair a and b for this sequence and note that
both of these degrees can compute an isomorphism between any two copies of A. This means that
any degree of categoricity for A must be below both a and b. If d is such a degree, then it must
therefore be computable from f1 ⊕ . . .⊕ fn for some n, which would lead to a contradiction.

2.3. Open questions. We can see that there can only be countably many degrees of categoricity
since they are all hyperarithmetic. However, the examples produced are all of the same type and
come nowhere near the upper bounds we have established for this class: all known examples are
d.c.e. in and above some degree of the form 0(α). All efforts to extend these constructions to even
3-c.e. degrees have failed to date, and indeed Csima and Harrison-Trainor’s work shows that no
natural structure can even have properly d.c.e. degree. This leads to a first obvious question:

Question 2.9. Is there a degree that is n-c.e. in and above 0(α) for some computable ordinal α
and some n > 2 that is not a degree of categoricity?

We may also ask a weaker version of this question inspired by the observation that the known
degrees of categoricity all have very simple approximations in the intervals [0(α),0(α+1)]. Must this
always be true?

Question 2.10. Is there a degree of categoricity that is not contained in an interval of the form
[0(α),0(α+1)] for some computable ordinal α?

On the more technical side, we note that there is a case that Csima, Franklin, and Shore did not
consider in [4]:

Question 2.11. If α is a computable limit ordinal, is every degree that is c.e. or d.c.e. in and
above 0(α) a (strong) degree of categoricity?

We also note that the degrees of categoricity for one particular class of structures have been
studied: in [11], it is shown that any c.e. degree is the degree of categoricity of some computable
algebraic field. It may be illuminating to consider the degrees of categoricity for other nonuniversal
structures:

Question 2.12. Which Turing degrees may be degrees of categoricity for a particular class C of
structures?

We now go on to the two most fundamental questions in the area. First of all, all the known
degrees of categoricity are strong degrees of categoricity, which leads to the following question:

Question 2.13. Is every degree of categoricity a strong degree of categoricity?

Secondly, we can ask for a full characterization.

Question 2.14. Characterize the Turing degrees that are degrees of categoricity.

10 FRANKLIN

3. Degrees that are low for isomorphism

We now turn our attention to Turing degrees that are very far from being degrees of categoricity:
those that are low for isomorphism, introduced by Franklin and Solomon in [14]. They use directed
graphs to study this concept as the authors considering degrees of categoricity have done, but here
these graphs are used because of the need to quantify over all structures in all computable languages.
This decision is based on work by Hirschfeldt, Khoussainov, Shore, and Slinko, who proved in [19]
that directed graphs are universal in the following sense: arbitrary countable structures A and B
in a computable language can be coded into countable directed graphs G(A) and G(B) such that

• A ∼= B if and only if G(A) ∼= G(B),
• A is computable exactly when G(A) is computable, and
• if A and B are computable, then for any Turing degree d, A ∼=d B if and only if G(A) ∼=d

G(B).

3.1. Examples of degrees that are low for isomorphism. The most common theme in these
proofs is that of forcing. In fact, any reasonable sort of computability-theoretic forcing at the right
level will allow us to produce a degree that is low for isomorphism.

The first type of forcing considered in [14] is forcing with generic reals; specifically, with Cohen
and Matthias generic reals. The following theorem is obtained:

Theorem 3.1. [14] Every Cohen 2-generic degree and every Matthias 3-generic degree is low for
isomorphism.

The proofs in this paper rely heavily on machinery from reverse mathematics [20, 21]; here we
present a direct proof for the Cohen generic case.

Let G be a Cohen 2-generic real. (In the future, when we write “generic” without further
qualification, we will mean “Cohen generic.”) We must show that for any A and B such that
A ∼=G B, A ∼=∆0

1
B. We begin by considering the following statements:

• ΦX
e maps an element of A to an element of B that witnesses that ΦX

e is not an isomorphism
from A to B.
• ΦX

e is total.
• ΦX

e is surjective.

We note that the first of these statements is Σ0,X
1 , since it states that at some stage, ΦX

e maps an
element of A to an element of B that do not satisfy the same formulas in the atomic diagram. It

is clear that the latter two statements are Π0,X
2 . Now we fix an A and B such that A ∼=G B. Since

G is 2-generic, it must force the truth or falsity of each of the above statements, and since G does
compute an isomorphism between A and B, we know that G must force the first statement to be
false and the others to be true. Let ρ be the initial segment of G that forces all these things. We
will construct a computable sequence ρ = σ0 � σ1 � σ2 � . . . in stages, defining σi at stage i, so
that each new term σi lets us define a longer partial isomorphism between A and B.

To define σi+1 for an even i, we consider the partial isomorphism found through σi. There is a
least element ni+1 of A whose image is undefined by this partial isomorphism, so we search above
σi for an extension σi+1 that, when used as an oracle on Φe, will place ni+1 in our domain. Such
an extension must exist because ρ has already forced totality, and the mapping it finds must be
extendible to an isomorphism between A and B because ρ has forced the first statement to be false.
Now we have extended the initial segment of the domain of our partial isomorphism.

STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY 11

To define σi+1 for an odd i, we do the same thing, but in reverse: there is a least element mi+1

of B that is not yet mapped to by the partial isomorphism defined at the end of the previous step
using σi as an oracle. Now, we search above σi for an extension σi+1 that, when used as an oracle
with Φe, will place mi+1 in our range. In this case, such an extension must exist because ρ has
forced surjectivity, and we have preserved our ability to extend to an isomorphism between A and
B as before.

Franklin and Solomon also use Sacks forcing with computable perfect trees to produce a degree
that is low for isomorphism that are minimal and hyperimmune free as well (see Chapter V.5 in [29]
for a discussion of this sort of forcing). Using a noneffective enumeration of all pairs (Ai,Bi) of all
infinite computable directed graphs, we build a sequence of computable perfect trees T0 ⊇ T1 ⊇ . . .
such that T0 is the identity tree and Ti(λ) ⊆ Ti+1(λ) for each i. The resulting set D is the set such
that Ti(λ) � D for every i. Four kinds of requirements must be satisfied in this proof:

• Noncomputability: For every e, D 6= Φe.
• Hyperimmune-freeness: For every e, either ΦD

e is not total or ΦD
e is majorized by a com-

putable function.
• Minimality: For every e, if ΦD

e is total, then either ΦD
e is computable or D ≤T ΦD

e .
• Lowness for isomorphism: For every e and i, if ΦD

e is an isomorphism from Ai to Bi, then
Ai ∼=∆0

1
Bi.

The construction once again proceeds by stages, and one of these requirements is satisfied at each
stage. The first three requirements are satisfied in the usual way (see [29] for details). We will
discuss the lowness for isomorphism requirements here.

Suppose we want to ensure that the lowness for isomorphism requirement is satisfied for Φe

and the pair (Ai,Bi). Without loss of generality, we can assume we have already satisfied the
hyperimmune-freeness requirement for e and that we are working at stage s+ 1. We now proceed
by cases.

If we satisfied the hyperimmune-freeness requirement by guaranteeing that ΦD
e will not be total,

then our lowness for isomorphism requirement is satisfied trivially and we simply choose the root
of our new tree Ts+1 to be any nonroot element of Ts.

If we satisfied the hyperimmune-freeness requirement by guaranteeing that ΦD
e will be total and

majorized by a computable function, we know that ΦA
e is total for every branch A of Ts. We now

check to see whether there is a string σ and a number n such that Φ
Ts(σ)
e �n halts and Φ

Ts(σ)
e �n is not

a partial isomorphism from Ai to Bi. If there is such a string σ, we take Ts+1 to be the full subtree
of Ts above σ. Otherwise, we know that any branch in Ts will give us an isomorphism between Ai
and Bi, and we can define a new subtree inside Ts computably so a computable isomorphism can
actually be found.

Franklin and Solomon also asked in [14] if one could “cap” the level of Cohen genericity associated
with lowness for isomorphism at 2-genericity: in other words, if it is possible for a 1-generic that is
not computed by a 2-generic to be low for isomorphism. In [16], Franklin and Turetsky answered
this question in the negative by constructing a 1-generic G that satisfies the following requirements:

(Onee): G either meets or avoids the Σ0
1 set We.

(Twoi): There is a Σ0
2 set Xi such that if ΦY

i = G, then Y neither meets nor avoids Xi.
(IM〈i,j1,j2〉): if ΦG

i is an isomorphism between Aj1 and Aj2 , then Aj1 ∼=∆0
1
Aj2 .

12 FRANKLIN

The first requirement can be satisfied through a standard finite injury approach: if we find at some
stage that we can extend our finite approximation to G to meet We, we do so, and it is satisfied
automatically otherwise.

Now, to satisfy (Twoi), we use infinitely many subrequirements:

(Two〈i,τ〉): If there is a Y � τ such that ΦY
i = G, then Y does not meet Xi and there is some

string ρ � τ such that ρ ∈ Xi.

In meeting each of these subrequirements, we construct our Xi. Suppose we have a finite approxi-
mation g to G and we are trying to satisfy (Two〈i,τ〉). We reserve the next bit b at position |g| for
our use and initially require that G(b) = 0. Now we try to find a string ρ � τ such that there is no
Y extending ρ with ΦY

i = G. If at some point we see a ρ extending τ where Φρ
i � ga0, we put this

ρ in Xi and change G(b) to 1. Since the construction is 0′′, the set of all these ρs over all τ will be
Σ0

2.
We argue briefly that this Xi serves its intended purpose: that for any i and Y such that ΦY

i = G,
Y cannot meet or avoid Xi. If Y avoids Xi, then we fix an initial segment τ of Y where this happens
and consider the appropriate node on the true path. By our definition of Xi, there is no ρ � τ with
Φρ
i � ga0, so ΦY

i (|g|) 6= 0. However, if there is no such ρ, ga0 will be an initial segment of G, so

ΦY
i and G must differ at position |g|.
If Y does meetXi, then we fix an initial segment ρ where this happens and consider the (Two〈i,τ〉)-

strategy that caused us to add this ρ to Xi and the node on the priority tree that witnesses this.
By definition, we know that we have a potential initial segment g of G associated with this node
and that Φρ

i � ga0. There are two possible scenarios. In the first, the node in question is to the
left of the true path, and the string g is not actually an initial segment of G. Therefore, we cannot
have ΦY

i = G. In the second, the node in question is actually on the true path. In this case, ga1
will be an initial segment of G, and ΦY

i and G must disagree at position |g|.
To satisfy (IM〈i,j1,j2〉), we use a standard infinitary construction. We establish a length of agree-

ment function for the appropriate node on the priority tree. If at some stage we can find a string
extending our current approximation that defines a longer isomorphism, we choose it as our new
approximation and take the infinite outcome at our node on the priority tree; otherwise we choose
a finite outcome.

3.2. Bounding this class from above. Franklin and Solomon also identify significant classes of
degrees that cannot be low for isomorphism. The first such class is the nontrivial ∆0

2 degrees:

Theorem 3.2. No nontrivial ∆0
2 degree is low for isomorphism and thus no degree that computes

a nontrivial ∆0
2 degree is low for isomorphism.

The proof is quite straightforward. We take a representative D of a noncomputable ∆0
2 degree d

and fix a ∆0
2 approximation 〈Ds〉 to it. We then use this approximation to construct two computable

directed graphs, G and H, so that the unique isomorphism between them is Turing equivalent to
D.

We begin by placing a (n + 2)-cycle in each of G and H for every n ∈ ω. The (n + 2)-cycle
component will code n’s membership in D. Then, for each (n + 2)-cycle in G, we add an arrow
from some element xn to a new element an, and for each (n+ 2)-cycle in H, we add an arrow from
some element yn to a new element bn. At this point, n 6∈ D, G and H are isomorphic, and this
isomorphism must map an to bn.

STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY 13

If, at stage s, n enters D, we add a new element a′ to G and a new element b′ to H so that there
are edges from an to a′ and from xn to a′ and edges from b′ to bn and yn to b′. We still have an
isomorphism between G and H, but now the isomorphism must map an to b′ and a′ to bn.

If n exits D at a later stage, we add new elements a′′ and b′′ to G and H respectively. This time,
we add edges from a′′ to an and from xn to a′′ and edges from bn to b′′ and from yn to b′′. We can
see that G and H are still isomorphic, but the isomorphism maps an to bn once more.

We can repeat this pattern and see that since after some point our approximation to D will be
constant on n, the (n+ 2)-cycles in G and H will stabilize, and the isomorphism between G and H
will map an to bn if and only if n 6∈ D. This is enough to see that G ∼=c H if and only if d ≤T c.

This lets us see that no degree above 0′ is low for isomorphism either, since the degrees that are
low for isomorphism are closed downward.

They also show using a similar proof that if a degree can compute a separating set for a pair of
computably inseparable c.e. sets, that degree cannot be low for isomorphism.

Franklin and Solomon then turn their attention to measure and prove the following theorem:

Theorem 3.3. No Martin-Löf random degree is low for isomorphism.

Here, we sketch a proof that a set of degrees of measure one is not low for isomorphism and then
discuss briefly how it can be modified to prove the theorem above.

We begin by observing that we can produce a class of degrees that are not low for isomorphism
with some positive measure and conclude using Kolmogorov’s 0-1 law that it must actually have
measure 1. We construct two isomorphic computable directed graphs G and H and a Π0

1 class C
so that

(P1): G 6∼=∆0
1
H,

(P2): µ(C) ≥ 1
2 , and

(P3): if X ∈ C, then X can compute an isomorphism from G to H.

(P1) and (P3) clearly combine to guarantee that no element of C can be low for isomorphism and
will not need to be modified when we require Martin-Löf randomness instead of simply positive
measure; the only adaptation we will need to make to (P2) is to construct a sequence of trees whose
measure increases in a very controlled way and forms the complement of a Martin-Löf test.

To satisfy (P1), we meet the following requirement:

Re: Φe is not an isomorphism from G to H.

As we satisfy this, we ensure that our diagonalization strategy for Re does not remove too much
measure from C, thus satisfying (P2) at the same time. Finally, to satisfy (P3), we construct a
Turing functional Γ so that for any X in C, ΓX is an isomorphism from G to H.

Our graphs G and H initially begin as infinitely many e-components for each e ∈ ω, where an
e-component is an (e + 3)-cycle with a coding node u distinguished by a loop. In the course of
our construction, we will add “tails” to coinfinitely infinitely many of the e-components when we
actively diagonalize to satisfy Re: a “tail” consists of two nodes x0 and x1 with arrows from u to
x0 to x1 to x0. This guarantees that a set X can compute an isomorphism between G and H if
and only if it can compute a bijection between the coding nodes in G and H and, furthermore,
successfully match up the tailed and untailed coding nodes.

First we discuss how we will meet a single requirement Re. To do this, we fix an e-component
in G and diagonalize against its coding node ae. If there is no stage s where ae is mapped to
a coding node b of an e-component in H, the requirement is satisfied trivially. Otherwise, we

14 FRANKLIN

actively diagonalize by adding tails to an infinite coinfinite set of coding nodes of e-components in
H, including b. We also add tails to an infinite coinfinite set of coding nodes of e-components in
G but ensure that ae is not among them to make sure that no isomorphism between G and H can
map ae to b as Φe does.

These infinite coinfinite sets are also used to define the Turing functional Γ and to ensure that
enough reals can compute an isomorphism between G0 and H0. At stage 0, we define Γ so that
for each e ∈ ω and each string σ of length e + 2, we define Γσ so it maps the coding nodes for
e-components in G0 to e-components in H0. Furthermore, we make sure that different strings of
the same length do not produce the same mapping. Now observe that these mappings will continue
to extend to isomorphisms at later stages as long as they map untailed components to untailed
components and tailed components to tailed components (when tails are added to our structures
at later stages). If, however, we satisfy Re by adding tails to some components, we must make sure
that we remove any branch X from our tree such that ΓX maps an untailed component to a newly
tailed component or vice versa.

Now we describe an abbreviated version of R0’s strategy to give an idea of how to balance these
conflicting requirements. To ensure that (P2) holds, we ensure that we do not remove more than 1

4
of the measure from our tree. To do this, we choose the infinite coinfinite sets that we will use to
diagonalize against a0 carefully and define Γ in such a way that, no matter what coding node Φ0

may map a0 to, we can diagonalize in such a way that we can remove no more than one string of
measure 1

4 and still have the oracles remaining in the class correctly map untailed components to
untailed components and tailed components to tailed components.

The class C will be defined as the set of branches in the intersection of our computable sequence
of trees 2<ω = T0 ⊇ T1 ⊇ . . ., and this class is obtained by removing the strings that are no longer
appropriate oracles for Γ given the changes in G and H that have taken place. Since we code
information about where the e-components map at a string of length e + 2 and we have arranged
the coding nodes so no more than one of the strings of that length will fail to code an isomorphism,
we remove at most 1

4 + 1
8 + . . . = 1

2 from our tree overall, and we have a tree of positive measure.
Now we explain how this proof can be modified to show that no Martin-Löf random real is low for

isomorphism. We begin by recalling the definition of Martin-Löf randomness; for a more thorough
discussion of algorithmic randomness, see [7].

Definition 3.4. A Martin-Löf test is an effectively c.e. sequence 〈Vi〉 of subsets of 2<ω such that
µ([Vi]) ≤ 2−i for all i, and a real X is Martin-Löf random if X 6∈ ∩i[Vi] for every Martin-Löf test
〈Vi〉.

Note that the class C we built has measure at least 1
2 ; its complement is therefore a Σ0

1 class of

measure no more than 1
2 . Its complement could therefore be the first component of a Martin-Löf

test. We construct an entire Martin-Löf test by constructing not just one Π0
1 class C but an effective

sequence of nested Π0
1 classes C0 ⊆ C1 ⊆ . . . where the ith class has measure at least 1− 1

2i+1 . Their
complements will therefore form a Martin-Löf test, and any Martin-Löf random real X will be in
Ci for some i and will thus not be low for isomorphism.

To construct this sequence of classes, we repeat the construction we just described as follows.
C0 will be generated as above. We arrange for each class Ci+1 to be larger than the previous one
as follows. When we remove a string σ from Ci (or, indeed, any previous class), we do not remove
that string from Ci+1. Instead, we start a new version of the construction inside this string. If a
new diagonalization process within these constructions requires that we remove a string from Ci+1,

STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY 15

it will be longer and thus we will remove less measure from Ci+1 than we did from Ci to satisfy
any given diagonalization requirement; with some planning, we can require that µ(Ci) ≥ 1− 1

2i
and

thus that the complement of Ci can be the ith component of our Martin-Löf test.
We also observe that this is the strongest result that can be obtained concerning lowness for

isomorphism and randomness: the computably random degrees and those that are low for isomor-
phism are not disjoint, since every high degree contains a computably random real [28], and there
is a high 2-generic.

3.3. Open questions. We first observe that Franklin and Turetsky’s result still leaves a gap in
the genericity hierarchy:

Question 3.5. Is there a properly 1-generic degree that is low for isomorphism and not computable
from a weakly 2-generic?

While there seems to be no easy way to adapt their construction to answer this question, it may
be possible to construct such a degree in some other way.

Csima has also defined a similar notion, lowness for categoricity. She has defined a degree d to
be low for categoricity if every computable structure that is d-computably categorical is already
computably categorical [3]. Lowness for isomorphism clearly implies lowness for categoricity, but
whether the converse holds is uncertain.

Question 3.6. Is every degree that is low for categoricity also low for isomorphism?

As with degrees of categoricity, we may also consider the degrees that are low for isomorphism
for a particular class of structures. Suggs has studied several cases, including linear orders [35];
some of this work appears in [14].

Question 3.7. Describe the degrees that are low for isomorphism for a particular class of structures
C.

We end with two questions that are rather hard and closely related:

Question 3.8. Are there other natural classes of degrees that are either subsets of or disjoint to
the degrees that are low for isomorphism?

Some candidates for such classes include the computably traceable degrees (a subset of the
hyperimmune-free degrees) and the c.e. traceable degrees.

We end with, once more, the obvious question.

Question 3.9. Characterize the Turing degrees that are low for isomorphism.

4. Discussion and musings

While the degrees of categoricity and those that are low for isomorphism both lack a full char-
acterization, they lack this characterization in very different ways. It is easy to describe all known
degrees of categoricity: they all belong to intervals of the form [0(α),0(α+1)] for some computable

ordinal α; in fact, they are all even d.c.e. in and above a degree of the form 0(α) for some such
α. All of the known constructions are very similar—one codes information about an appropriate
set in the degree in question into two copies of the same structure, using an approximation of this
set—and none of them extend to the 3-c.e. case. It is known that the degrees of categoricity are
all hyperarithmetic and thus that this class is countable, so it must be null. It is also small with

16 FRANKLIN

Table 1. Lowness for isomorphism: Categories of degrees

Low for isomorphism Not low for isomorphism
Nontrivial ∆0

2 no yes: ∆0
2

Nontrival ∆0
3 yes: Cohen forcing yes: Martin-Löf random

Minimal yes: perfect trees yes: ∆0
2

Not minimal yes: Cohen forcing yes: ∆0
2

Hyperimmune yes: Cohen forcing yes: ∆0
2

Hyperimmune-free yes: perfect trees yes: Martin-Löf random

respect to category, since no such degree can be 2-generic. Furthermore, no degree of categoricity
can be hyperimmune free.

On the other hand, there is no convenient way to describe the class of degrees that are low
for isomorphism. While the Cohen 2-generics and Matthias 3-generics are known to be subsets of
this class and no Martin-Löf degree can belong to it, most of the results in this area consist of
showing that some degree of a certain kind is low for isomorphism and another degree of the same
kind is not; a summary appears in Table 1. For any category that does contain degrees that are
low for isomorphism, the proof method is indicated; for any category that does not, one type of
counterexample is indicated. It is clear that lowness for isomorphism is not closely related to any
natural class except the ∆0

2 degrees.

Most of the results on lowness for isomorphism were obtained by forcing. In general, any type
of forcing that will allow us to force a functional to be total and surjective and never to fail to
be a partial isomorphism will permit us to construct a set that is low for isomorphism.1 However,
lowness for isomorphism is not a property strictly determined by the ability to force: Anderson and
Csima constructed a Σ0

2 example of a degree that is low for isomorphism using a standard injury
argument.

We can also argue that there are very few degrees that are low for isomorphism: they have
measure 0 since no Martin-Löf degree is low for isomorphism. However, unlike the degrees of cate-
goricity, they are large with respect to category since every 2-generic degree is low for isomorphism.

In short, the degrees of categoricity and the degrees that are low for isomorphism appear to
be diametrically opposed, bros. All known degrees of categoricity have a simple approximation:
one that is no more than d.c.e. in some jump of 0. In some way, they form the “backbone” of
the Turing degrees. The degrees that are low for isomorphism, on the other hand, are in general,
those that cannot be effectively approximated (Anderson and Csima’s Σ0

2 example is, once again,
a delightfully puzzling exception). Unsurprisingly, they are bounded away from each other: no
degree that is comparable to 0′ is low for isomorphism, which is where all the all the known degrees
of categoricity reside.

Since both of these classes resist characterization and they are bounded away from each other,
it may be of interest to consider the class of degrees that fall between them. What kinds of degrees
are neither low for isomorphism nor degrees of categoricity? They must resist approximation, but

1We note with some amusement that the isomorphism condition is actually lower in the arithmetic hierarchy than
the others and is therefore not the condition that determines the degree of genericity necessary to force lowness for
isomorphism.

STRENGTH AND WEAKNESS IN COMPUTABLE STRUCTURE THEORY 17

not too much. Furthermore, this class of degrees is large with respect to measure and small with
respect to category. There are certainly natural classes of degrees with this property, and if one
of them proved to be disjoint from both of the classes we have considered in this paper, it might
illuminate the features inherent in each of them.

Question 4.1. Is there a natural class of degrees that is disjoint from both the degrees of cate-
goricity and the degrees that are low for isomorphism?

We also notice that the degrees that are low for isomorphism do not form an ideal in the Turing
degrees: while they are downward closed, they are not closed under join because there is a pair
of 2-generics whose join computes 0′. However, we may ask a follow-up question: are we, in fact,
considering the most appropriate degree structure? In algorithmic randomness, the Schnorr trivial
reals have unexpected properties in the Turing degrees [6, 12], but they behave as one expects trivial
reals to behave in the truth-table degrees [15]. It may be that these notions are better understood
in another degree structure:

Question 4.2. Describe the behavior of the degrees of categoricity and the degrees that are low for
isomorphism in an alternate degree structure such as the weak truth-table or truth-table degrees.

References

[1] Bernard A. Anderson and Barbara F. Csima. Degrees that are not degrees of categoricity. Notre Dame J. Formal
Logic. To appear.

[2] C.J. Ash and J. Knight. Computable Structures and the Hyperarithmetical Hierarchy. Number 144 in Studies in
Logic and the Foundations of Mathematics. North-Holland, 2000.

[3] Barbara Csima. Degrees of categoricity and related notions, November 2013. BIRS Computable Model Theory
Workshop.

[4] Barbara F. Csima, Johanna N.Y. Franklin, and Richard A. Shore. Degrees of categoricity and the hyperarithmetic
hierarchy. Notre Dame J. Formal Logic, 54(2):215–231, 2013.

[5] Barbara F. Csima and Matthew Harrison-Trainor. Degrees of categoricity on a cone. J. Symbolic Logic. To
appear.

[6] Rod Downey, Evan Griffiths, and Geoffrey LaForte. On Schnorr and computable randomness, martingales, and
machines. Math. Log. Q., 50(6):613–627, 2004.

[7] Rodney G. Downey and Denis R. Hirschfeldt. Algorithmic Randomness and Complexity. Springer, 2010.
[8] Yu. L. Ershov. A hierarchy of sets, I. Algebra and Logic, 7(1):212–232, 1968. English translation. Originally

appearing in Algebra i Logika, 7(1):47–74, 1968 (Russian).
[9] Yu. L. Ershov. On a hierarchy of sets, II. Algebra and Logic, 7(4):25–43, 1968. English translation. Originally

appearing in Algebra i Logika, 7(4):15–47, 1968 (Russian).
[10] Yu. L. Ershov. On a hierarchy of sets, III. Algebra and Logic, 9(1):20–31, 1970. English translation. Originally

appearing in Algebra i Logika, 9(1):34–51, 1970 (Russian).
[11] Ekaterina B. Fokina, Iskander Kalimullin, and Russell Miller. Degrees of categoricity of computable structures.

Arch. Math. Logic, 49(1):51–67, 2010.
[12] Johanna N.Y. Franklin. Schnorr trivial reals: A construction. Arch. Math. Logic, 46(7–8):665–678, 2008.
[13] Johanna N.Y. Franklin. Lowness and highness properties for randomness notions. In T. Arai et al., editor,

Proceedings of the 10th Asian Logic Conference, pages 124–151. World Scientific, 2010.
[14] Johanna N.Y. Franklin and Reed Solomon. Degrees that are low for isomorphism. Computability, 3(2):73–89,

2014.
[15] Johanna N.Y. Franklin and Frank Stephan. Schnorr trivial sets and truth-table reducibility. J. Symbolic Logic,

75(2):501–521, 2010.
[16] Johanna N.Y. Franklin and Dan Turetsky. Genericity and lowness for isomorphism. Submitted.
[17] A. Fröhlich and J. C. Shepherdson. Effective procedures in field theory. Philos. Trans. Roy. Soc. London. Ser.

A., 248:407–432, 1956.

18 FRANKLIN

[18] Valentina S. Harizanov. Pure computable model theory. In Handbook of recursive mathematics, Vol. 1, volume
138 of Stud. Logic Found. Math., pages 3–114. North-Holland, Amsterdam, 1998.

[19] D. Hirschfeldt, B. Khoussainov, R. Shore, and A. Slinko. Degree spectra and computable dimensions in algebraic
structures. Ann. Pure Appl. Logic, 115(1-3):71–113, 2002.

[20] Denis R. Hirschfeldt and Richard A. Shore. Combinatorial principles weaker than Ramsey’s theorem for pairs.
J. Symbolic Logic, 72(1):171–206, 2007.

[21] Denis R. Hirschfeldt, Richard A. Shore, and Theodore A. Slaman. The atomic model theorem and type omitting.
Trans. Amer. Math. Soc., 361(11):5805–5837, 2009.

[22] Denis R. Hirschfeldt and Walker M. White. Realizing levels of the hyperarithmetic hierarchy as degree spectra
of relations on computable structures. Notre Dame J. Formal Logic, 43(1):51–64 (2003), 2002.

[23] Julia F. Knight. Degrees coded in jumps of orderings. J. Symbolic Logic, 51(4):1034–1042, 1986.
[24] David Marker. Non Σn axiomatizable almost strongly minimal theories. J. Symbolic Logic, 54(3):921–927, 1989.
[25] Antonio Montalbán. Priority arguments via true stages. J. Symb. Log., 79(4):1315–1335, 2014.
[26] Y.N. Moschovakis. Descriptive Set Theory. Number 100 in Studies in Logic and the Foundations of Mathematics.

North-Holland, 1980.
[27] André Nies. Computability and Randomness. Clarendon Press, Oxford, 2009.
[28] André Nies, Frank Stephan, and Sebastiaan A. Terwijn. Randomness, relativization and Turing degrees. J.

Symbolic Logic, 70(2):515–535, 2005.
[29] Piergiorgio Odifreddi. Classical Recursion Theory. Number 125 in Studies in Logic and the Foundations of

Mathematics. North-Holland, 1989.
[30] Piergiorgio Odifreddi. Classical Recursion Theory, Volume II. Number 143 in Studies in Logic and the Founda-

tions of Mathematics. North-Holland, 1999.
[31] Gerald E. Sacks. Higher Recursion Theory. Springer-Verlag, 1990.
[32] Theodore A. Slaman and Robert M. Solovay. When oracles do not help. In Fourth Annual Workshop on Com-

putational Learning Theory, pages 379–383. Morgan Kaufman., Los Altos, CA, 1991.
[33] Robert Soare. The Friedberg-Muchnik theorem re-examined. Canadian J. of Math., 24:1070–1078, 1972.
[34] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in Mathematical Logic. Springer-Verlag,

1987.
[35] Jacob Suggs. Degrees that are low for C isomorphism. PhD thesis, University of Connecticut, 2015.

Department of Mathematics, Room 306, Roosevelt Hall, Hofstra University, Hempstead, NY 11549-
0114, USA

E-mail address: johanna.n.franklin@hofstra.edu

