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Abstract. In this paper, we define new notions of randomness based on the difference hierarchy.
We consider various ways in which a real can avoid all effectively given tests consisting of n-r.e.
sets for some given n. In each case, the n-r.e. randomness hierarchy collapses for n ≥ 2. In
one case, we call the resulting notion difference randomness and show that it results in a class of
random reals that is a strict subclass of the Martin-Löf random reals and a proper superclass of
both the Demuth random and weakly 2-random reals. In particular, we are able to characterize
the difference random reals as the Turing incomplete Martin-Löf random reals. We also provide a
martingale characterization for difference randomness.

1. Introduction

The most commonly studied randomness notion, Martin-Löf randomness, is defined in terms of
avoidance of null sets created by a uniformly r.e. sequence of sets of finite binary strings 〈Vi〉i∈ω
such that the Lebesgue measure of [Vi] is no more than 2−i for each i. In this paper, we consider
some possible ways of defining a randomness notion in which each set in the sequence is defined in
an n-r.e. way for some fixed n instead of simply an r.e. way.

The first part of this paper is devoted to an investigation of the ways in which n-r.e. randomness
can be defined. In Section 2, we discuss two ways in which an element of such a sequence can be
considered to be n-r.e. In one case, the “n-r.e. random” reals are precisely those that are random
in another, established sense; in the other, a new class of reals is produced. In fact, in the latter
case, the hierarchy collapses for n ≥ 2, and these reals form a proper subclass of the Martin-Löf
random reals and a proper superclass of both the Demuth random reals and the weakly 2-random
reals.

In Section 3, we identify the precise subclass of Martin-Löf random reals that corresponds to
this class. It turns out to be a very natural class of the Martin-Löf random reals: those that do
not Turing compute ∅′. We then discuss weakness with respect to this notion of randomness (and,
thus, with respect to that subclass of the Martin-Löf random reals) in Section 4. In Section 5, we
investigate possible characterizations of the n-r.e. random reals in terms of martingales.

Our notation is standard and generally follows Soare [19] and Odifreddi [15, 16]. For a general
overview of randomness, we refer the reader to Downey and Hirschfeldt [3] and Nies [13]. We will
work within the Cantor space, 2ω, and refer to its elements as reals. When we discuss the measure
of a set A in this space, we will always mean the Lebesgue measure, and we will denote it by µ(A).
The basic open set generated by a finite binary string σ is denoted by [σ] = {X ∈ 2ω | X ⊃ σ}. If
S is a set of finite binary strings, we define [S] = ∪{[σ] : σ ∈ S}. When the context is clear, we
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will not distinguish between a set of strings S and the open set of reals [S] that it generates. The
length of a finite binary string σ will be denoted by |σ|.

We begin by recalling Martin-Löf’s original definition of Martin-Löf randomness from [10].

Definition 1.1. A Martin-Löf test is a uniformly r.e. sequence 〈Vi〉i∈ω of subsets of 2<ω such that
µ(Vi) ≤ 2−i for every i, and we say that a real A passes a test 〈Vi〉i∈ω if A 6∈ ∩iVi. A real is said to
be Martin-Löf random if it passes every Martin-Löf test.

When we define Martin-Löf randomness in this way, we are presenting the Martin-Löf random
reals as the reals that pass all reasonable statistical tests in the form of effectively presented null
sets. Here, the “effective presentation” is the uniform sequence of r.e. sets defining the null set.

Other, stronger randomness notions have been studied. To get such a notion, we place weaker
effective conditions on the presentation of the tests. In particular, we will consider Demuth ran-
domness and weak 2-randomness. The reals that are Demuth random and the reals that are weakly
2-random are all Martin-Löf random, though they form proper superclasses of the 2-random reals.

Demuth randomness, like Martin-Löf randomness, is defined in terms of tests. We maintain the
Martin-Löf requirements on the measure and composition of the elements of the test, but we relax
the uniformity condition on the indices of the elements of the tests and the conditions for passing
a Demuth test. We say that a real Solovay-passes a test 〈Vi〉i∈ω if it is contained in Vi for only
finitely many i.

Definition 1.2. [1] A Demuth test is a sequence 〈Vi〉i∈ω of r.e. open sets such that Vi = Wf(i) for
some ω-r.e. function f and µ(Vi) ≤ 2−i for every i. A real A is Demuth random if it Solovay-passes
every Demuth test.

Now we consider the notion of weak 2-randomness, introduced by Kurtz. In [9], Kurtz originally
defined this notion in terms of Σ0

2 classes: a real is weakly 2-random if it is not contained in any Σ0
2

class of measure 1. The definition below, which is much more similar to the standard definitions of
Demuth and Martin-Löf randomness, was demonstrated to be equivalent to the original definition
by Wang in [22].

Definition 1.3. A generalized Martin-Löf test is a recursive sequence of r.e. open sets 〈Vi〉i∈ω such
that Vi ⊇ Vi+1 for all i and limi µ(Vi) = 0. A real is weakly 2-random if it passes all generalized
Martin-Löf tests.

In short, a generalized Martin-Löf test is a Martin-Löf test whose rate of convergence is not
fixed. By an observation of Hirschfeldt and Miller, a weakly 2-random string Z forms a minimal
pair with ∅′ [13]. Hence a weakly 2-random real cannot be approximated in a ∆0

2 way (in fact, not
even in a Σ0

2 way).
In this paper, we will introduce and explore a new randomness notion defined by weakening the

Martin-Löf condition that each component of a test be r.e. However, our requirements will still be
stronger than the requirements for Demuth and weak 2-randomness. To do this, we will consider
the higher levels of the difference hierarchy, introduced by Ershov in [5]. This can also be traced
back to Putnam [17].

Definition 1.4. Let n ∈ ω. A set X is n-r.e. if there is a recursive function f : ω2 → {0, 1} such
that the following three conditions hold for all k.

(1) f(k, 0) = 0.
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(2) X(k) = lims f(k, s).
(3) |{s | f(k, s+ 1) 6= f(k, s)}| ≤ n.

In other words, a set X is n-r.e. if it is defined by a recursive function that may change its mind
about any element’s membership in X up to and including n times. This is a very natural approach
to take to consider variations on Martin-Löf randomness. The randomness class defined using this
approach has turned out to be connected to classical Martin-Löf randomness in interesting ways
that capture precisely the interactions between Martin-Löf randomness and computational strength,
and the corresponding lowness notions have also turned out to be related to certain well-studied
subclasses of the K-trivials defined in terms of cupping and coverability, which we will mention
below.

Several recent results have indicated that the Turing incomplete Martin-Löf random reals is the
right class of random reals to study. Stephan proved that any Martin-Löf random degree that is also
a PA degree must Turing compute ∅′ [21]. (Recall that a degree is PA if it computes a complete
extension of Peano arithmetic.) This result shows that there are only two kinds of Martin-Löf
random reals. The first kind is computationally powerful enough to compute the halting problem,
and the second kind is computationally weak in that these reals fail to compute a complete extension
of PA. Since we expect randomness to be antithetical to computational strength, we would like to
have a randomness notion in which the random reals are not very useful when used as oracles.
For instance, weakly 2-random reals contain no common information with the halting problem.
Stephan’s result showed a certain dichotomy in Martin-Löf randomness: if we eliminate the Martin-
Löf random reals of the first kind, then we get a subclass of the Martin-Löf random reals which
obey our intuition above. In Theorem 3.1, we show that a real is difference random if and only if
it is Turing incomplete and Martin-Löf random. In particular, our result shows that the Turing
incomplete Martin-Löf random reals are precisely the reals that are random with respect to a
natural notion.

We will also consider the lowness notions associated with difference randomness. Surprisingly,
we can find yet another relationship with Martin-Löf randomness—this time from the point of view
of K-triviality and lowness for Martin-Löf randomness. Recall that a set A is K-trivial if for some
constant c, we have K(A�n) ≤ n + c for every n, where K(σ) denotes the prefix-free Kolmogorov
complexity of σ for the binary string σ. There has been an extensive study of K-triviality and
various subclass of K-triviality in the literature; we refer the reader to [13] for more details. We
mention two related classes. Recall that a set A is Martin-Löf coverable if there is a Martin-Löf
random real Z ≥T A such that ∅′ 6≤T Z and that a set A is weakly Martin-Löf cuppable if there is
a Martin-Löf random real Z such that ∅′ 6≤T Z and A ⊕ Z ≥T ∅′. Hirschfeldt, Nies and Stephan
showed that every Martin-Löf coverable r.e. set is K-trivial [6]. It also follows from the work of
Downey, Hirschfeldt, Miller and Nies that every r.e. set that is not weakly Martin-Löf cuppable is
K-trivial [2]. The question of whether either of these two notions is equivalent to K-triviality is
still open [11] and seems to be a difficult problem.

In this paper, we contribute to the understanding of these two subclasses of the r.e. K-trivial
reals. In Theorem 4.1, we show that an r.e. set A is Martin-Löf coverable if and only if it is a
base for difference randomness (that is, A ≤T Z for some Z that is difference random relative to
A). In Theorem 4.2, we show that an r.e. set A is weakly Martin-Löf cuppable if and only if it is
low for difference randomness (that is, every difference random real is difference random relative to
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A). Hence the two aforementioned subclasses of the r.e. K-trivials defined using degree-theoretic
notions can actually be expressed in terms of lowness properties for difference randomness.

Finally, in Theorem 5.1, we provide a characterization of difference randomness in terms of
the reals which fail to win against a certain class of martingales. We call this class of martingales
difference martingales. This points to a certain robustness in the definition of difference randomness.

2. Formalizing n-r.e. randomness

We want to formalize the intuition that an n-r.e. test is a sequence of sets Vi ⊂ 2<ω with measure
effectively vanishing to 0 such that the sequence 〈Vi〉i∈ω is uniformly n-r.e. The issue is this: should
the level of complexity of the set Vi refer to the number of times that a given string can be admitted
to or removed from Vi or to the number of times that a given clopen neighborhood be admitted
to or removed from [Vi]? In the case of a Martin-Löf test, this distinction is not necessary since
strings (and therefore the corresponding clopen sets) are enumerated but never removed.

However, these notions differ for n-r.e. tests whenever n ≥ 2. For example, suppose that the
string 01 enters and then exits V1, where 〈Vi〉i∈ω is a d.r.e. test. If V1 is d.r.e. with respect to
neighborhoods, no subneighborhood of [01] will be contained in V1. However, if V1 is d.r.e. with
respect to strings, this is possible: perhaps 0100, 0101, and 011 will also enter V1 and never exit,
so [0100] ∪ [0101] ∪ [011] = [01] will be contained in V1 after all.

We first show that the naive approach, that of simply requiring the set of strings defining each
Vi to be n-r.e., does not produce a new class of random reals. We define this approach formally as
follows.

Definition 2.1. For n ≥ 1, a naive n-r.e. test is a uniform sequence 〈Vi〉i∈ω of sets of finite binary
strings such that for every i, µ(Vi) ≤ 2−i and (the set of code numbers for the strings in) Vi is n-r.e.

We note that the (n+ 1)-r.e. random reals are a subclass of the n-r.e. random reals for every n
by definition. We now show that it is not a proper subclass unless n = 1; that is, that the hierarchy
of naive n-r.e. randomness collapses for n ≥ 2. In fact, it gives rise to a well-known notion. Recall
that a real is 2-random if and only if it is Martin-Löf random with respect to ∅′.

Proposition 2.2. The following statements are equivalent for a real A when n ≥ 2.
(1) For every naive n-r.e. test 〈Vi〉i∈ω, A 6∈ ∩iVi.
(2) For every naive n-r.e. test 〈Vi〉i∈ω, A ∈ Vi for only finitely many i.
(3) A is 2-random.

Proof. Since every n-r.e. set is recursive in ∅′, the only non-trivial direction is (1) implies (3). We
let 〈U∅′i 〉i∈ω be a universal Martin-Löf test relative to ∅′ and construct a naive d.r.e. test 〈Vi〉i∈ω
such that for every i, [Vi] = [U∅

′

i ]. We fix an enumeration 〈∅′s〉s∈ω of ∅′ and let 〈U∅
′
s
i,s〉s∈ω be a Σ0

2

enumeration of U∅
′

i . We may assume that U∅
′

i is prefix free. By the hat trick and by speeding up
the approximation, we may also assume that U∅

′
s
i,s is prefix free for each s.

We define Vi,0 to be ∅. At a stage s > 0, for each σ ∈ U∅
′
s
i,s, we let t ≤ s be the least such that

t ≥ |σ| and for every t ≤ t′ ≤ s, σ ∈ U∅
′
t′
i,t′ . Add every extension τ ⊃ σ where |τ | = t to Vi,s. That is,

once we observe that σ ∈ U∅
′
s
i,s, we add all extensions of σ of length s to Vi. These extensions stay

in Vi until some stage t > s in which σ leaves U∅
′
t
i,t , at which point we remove all the extensions of
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σ of length s from Vi,t. It is easy to see, using the fact that each U∅
′
s
i,s is prefix-free, that 〈Vi,s〉i∈ω is

a d.r.e. approximation to the set ∪sVi,s (as sets of strings). It is also easy to verify that [Vi] = [U∅
′

i ]
for every i. �

Therefore, the same theorems hold for the naively d.r.e. random reals (and thus the naively
n-r.e. random reals for every n ≥ 2) that hold for the 2-random reals. For instance, every real
A that is naively d.r.e. random is in GL1 [7] (i.e., A′ ≤T A ⊕ ∅′) and is even low for Ω [14] (i.e.,
Ω is Martin-Löf random relative to A, where Ω is the halting probability of some fixed universal
prefix-free machine).

Since the randomness notions based on n-r.e. sets of strings do not generate a new class, we
now define a type of randomness in which we restrict the number of times a clopen neighborhood
may enter or exit a test instead of a string. To avoid confusion, for sets U, V ⊆ 2<ω, we will write
D(U, V ) to denote the set [U ] − [V ]. That is, a real X ∈ D(U, V ) iff X ⊃ σ for some σ ∈ U and
X 6⊃ τ for every τ ∈ V . For a finite sequence of sets U1, U2, · · · , Un ⊆ 2<ω, we will simplify our
notation and write D(U1, U2, · · · , Un) for D(U1, U2) ∪D(U3, U4) ∪ · · · ∪D(Un−2, Un−1) ∪ [Un] if n
is odd and D(U1, U2, · · · , Un) for D(U1, U2) ∪D(U3, U4) ∪ · · · ∪D(Un−1, Un) if n is even.

Definition 2.3. Let n ≥ 1. An n-r.e. test is a sequence 〈D(Wg1(i), · · · ,Wgn(i))〉i∈ω where g1, · · · , gn
are recursive functions and µ(D(Wg1(i), · · · ,Wgn(i))) ≤ 2−i for every i. We will say that a real
A ∈ 2ω is n-r.e. random if for every n-r.e. test 〈Ui〉i∈ω, A 6∈ ∩iUi. If n = 2, we will call these reals
d.r.e. random.

For instance, if D(V0, V1) is a component of a d.r.e. test, then V0 represents the class of clopen
sets that we wish to put into our test and V1 represents the class of clopen sets that we wish to
remove from our test. If σ enters V0,s and some τ ⊇ σ enters V1,t for some t > s, then we can
think of [τ ] as being first enumerated at stage s and then removed at stage t. In a 3-r.e. test
D(V0, V1) ∪ [V2], we will allow extensions η of τ to be enumerated into V2. This means that [η] is
first enumerated into our test, then removed, and then finally put back into our test.

We note that a component of a d.r.e. test is of the form C∩D for a Σ0
1 class C and a Π0

1 class D. In
the case of Martin-Löf tests, the components are Σ0

1 classes. Thus, if we consider the descriptional
complexity of the test components, this is the most natural way of generalizing Martin-Löf tests.

We note that replacing “r.e.” with “co-r.e.” gives us nothing new. In the case where n = 1, a
1-co-r.e. test is simply a uniform sequence of Π0

1-classes with measure effectively shrinking to 0, so
the resulting randomness notion is simply weak randomness. For n > 1, note that if D is a co-r.e.
set of strings, then [D] = 2ω − [U ] for some r.e. set of strings U (and vice versa). Hence if X is a
member of a n-co-r.e. test, then X is a member of an (n+ 1)-r.e. test, which can in turn be covered
by a d.r.e. test (by Theorem 2.8, where we show that the n-r.e. randomness hierarchy collapses).
The latter can be expressed as an n-co-r.e. test, so we will be able to see that n-co-r.e. randomness
is equivalent to d.r.e. randomness for every n > 1.

We now describe a normal form for an n-r.e. test.

Definition 2.4. We will call an n-r.e. test D(U1
i , U

2
i , · · · , Uni ) canonical if each Uki is prefix-free

and for every i, σ, and k such that 1 < k ≤ n and σ ∈ Uki , there is a τ in Uk−1
i such that τ ⊆ σ.

For instance, in a canonical d.r.e. test, we only “remove” neighborhoods that we have previously
put in. In a canonical 3-r.e. test, if we add a neighborhood [τ ] to [U3

i ], we require that it have been
enumerated in U2

i previously. That is, [U3
i ] will only contain clopen neighborhoods which have
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been “removed” by [U2
i ]. The following lemma says that every n-r.e. test can be represented in a

canonical way.

Lemma 2.5. Let 〈D(U1
i , U

2
i , · · · , Uni )〉i∈ω be an n-r.e. test. Then there is a canonical n-r.e. test

〈D(V 1
i , V

2
i , · · · , V n

i )〉i∈ω such that D(U1
i , U

2
i , · · · , Uni ) = D(V 1

i , V
2
i , · · · , V n

i ) for every i.

Proof. First, we consider the case of d.r.e. tests. We may assume that U1
i and U2

i are prefix-free
for every i. We then let V 1

i = U1
i , and whenever some σ enters U2

i , we wait until some comparable
τ is enumerated into V 1

i . We then enumerate the longer of the two strings σ and τ into V 2
i . This

clearly produces a canonical d.r.e. test. Now we fix m ≥ 2 and consider n-r.e. tests for n = 2m (if
n is odd, the proof follows similarly). We can assume that for every i and j and every σ ∈ U2j

i ,
there is a τ in U2j−1

i such that τ ⊆ σ. We also assume that each Uki is prefix free.
Fix i. Since the process is uniform in i, we will drop the subscript. We let V 1 = ∪k<mU2k+1;

that is, everything that ever enters D(U1
i , U

2
i , · · · , Uni ). For 1 ≤ j ≤ m, we define V 2j to be the set

of all σ such that
(1) σ ⊇ τ for some τ ∈ V 2j−1 and
(2) [σ] ⊆ [U2k] for at least j many different values for k.

Similarly, for 1 ≤ j < m, we let V 2j+1 be the set of all σ such that
(1) σ ⊇ τ for some τ ∈ V 2j and
(2) [σ] ⊆ [U2k+1] for at least j + 1 many different values for k.

Clearly, each of these sets is r.e. It is not hard to see that we can replace each V j with
an equivalent prefix-free set of strings while maintaining canonicity. Now we must verify that
D(U1, U2, · · · , Un) = D(V 1, V 2, · · · , V n).

Suppose A ∈ D(V 1, V 2, · · · , V n). Then A ∈ [V 2j−1] − [V 2j ] for exactly one j ≤ m. Since A ∈
[V 2j−1], this means that there are distinct k1, · · · , kj such that A ∈ [U2k1−1]∩ · · · ∩ [U2kj−1]. If we
also have A ∈ [U2k1 ]∩· · ·∩[U2kj ], then some initial segment of A witnesses that A ∈ [V 2j ]. Since A 6∈
[V 2j ], this means that A ∈ D(U2k1−1, U2k1 , · · · , U2kj−1, U2kj ) ⊆ D(U1, U2, · · · , Un). Suppose now
that A ∈ D(U1, U2, · · · , Un). Let k1, · · · , kj be precisely the k such that A ∈ [U2k1 ], · · · , A ∈ [U2kj ].
Since we have assumed that each D(U2k−1, U2k) is canonical, we have A ∈ [U2k1−1]∩· · ·∩ [U2kj−1].
In fact, we must also have A ∈ [U2kj+1−1] for some kj+1 distinct from the others. There will be
some initial segment of A that will witness that A ∈ [V 1], A ∈ [V 2], · · · , A ∈ [V 2j+1]. However we
cannot have A ∈ [V 2j+2] by the maximality of j, so A ∈ D(V 2j+1, V 2j+2). �

It is clear that every m-r.e. random real is n-r.e. random if m ≥ n. Once again, we must address
the question of whether this hierarchy collapses. It turns out that the answer is yes: the n-r.e. tests
are no more powerful than the d.r.e. tests for any n > 2. This demonstrates a certain amount of
robustness in the class of d.r.e. random reals. To prove this, we will use the notion of a Solovay
test and the characterization of Martin-Löf randomness in terms of Solovay tests.

Definition 2.6. [20] A Solovay test is a uniformly r.e. sequence 〈Si〉i∈ω of subsets of 2<ω such that∑
i µ(Si) < ∞. A real A is Solovay random if for every such test, there are only finitely many i

such that some initial segment of A is an element of Si.

Theorem 2.7. [20] A real is Martin-Löf random if and only if it is Solovay random.

Theorem 2.8. If n > 1, then the n-r.e. random reals are precisely the d.r.e. random reals.
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Proof. If A is not n-r.e. random, there is an n-r.e. test 〈D(U1
i , U

2
i , · · · , Uni )〉i∈ω such that A ∈

∩iD(U1
i , U

2
i , · · · , Uni ). Note that µ(D(U2k−1

i , U2k
i )) < 2−i for every k ≤ n

2 and every i. We consider
the cases of odd n and even n separately.

Suppose that n > 1 is odd. Then 〈D(U1
i , U

2
i , · · · , U

n−1
i )〉i∈ω is an (n − 1)-r.e. test and ∪iUni is

a Solovay test. Either A ∈ D(U1
i , U

2
i , · · · , U

n−1
i ) for almost every i or A extends infinitely many

strings in ∪iUni . Therefore, A is either not (n− 1)-r.e. random or not Martin-Löf random.
Now suppose that n > 2 is even. By Lemma 2.5, we can suppose that the Ukj are in

canonical form. Observe that for any i, 〈D(∪j>i+1U
n−1
j ,∪j>i+1U

n
j )〉i∈ω is a d.r.e. test since

D(∪j>i+1U
n−1
j ,∪j>i+1U

n
j ) ⊆ ∪j>i+1D(Un−1

j , Unj ), and the measure is bounded by 2−i. By canon-
icity, A 6∈ [∪j>iUnj ] for any i. Therefore, either A ∈ D(U1

i , U
2
i , · · · , U

n−3
i , Un−2

i ) for almost every i
or A ∈ D(∪j>iUn−1

j ,∪j>iUnj ) for almost every i. In this case, A is either not (n − 2)-r.e. random
or not d.r.e. random. �

At this point, we observe that calling these reals “n-r.e. random” is somewhat misleading since
one has an automatic tendency to assume that the choice of n is significant. Since this hierarchy
of randomness notions collapses for n ≥ 2, henceforth we will refer to this notion as difference
randomness instead, which emphasizes the main point of contrast between it and Martin-Löf ran-
domness very clearly. We will however, still refer to the tests described in Definition 2.3 as n-r.e.
tests, and we will primarily use the characterization of this class as that of d.r.e. randomness in
proofs.

We next give an alternative way of characterizing difference randomness. In Lemma 2.9, we
show that we can essentially restrict our attention to tests which are Σ0

1 classes at the cost of
increasing the complexity of the indices. A Demuth test 〈Wg(i)〉i∈ω is strict if there is an ω-r.e.
approximation g(i, s) of g such that for every i and s such that g(i, s) 6= g(i, s + 1), we have
[Wg(i,s+1)] ∩ [∪t≤sWg(i,t)] = ∅. A strict Demuth test can be thought of as a d.r.e. test in which we
remove neighborhoods only finitely often and, each time we effect such a removal, we remove every
neighborhood enumerated into the test so far.

Proposition 2.9. A real A is difference random if and only if for every strict Demuth test
〈Wg(i)〉i∈ω, A 6∈ ∩iWg(i).

Proof. We begin by supposing that A ∈ ∩iWg(i) for some strict Demuth test 〈Wg(i)〉i∈ω. Let
Ui = ∪sWg(i,s) and Vi = ∪{Wg(i,s) : g(i, s) 6= g(i)}. Then 〈D(Ui, Vi)〉i∈ω is a d.r.e. test, and in fact
D(Ui, Vi) = [Wg(i)] for every i, so A is not difference random.

Now suppose that 〈D(Ui, Vi)〉i∈ω is a d.r.e. test and that A ∈ ∩iD(Ui, Vi). We will build a strict
Demuth test {Wg(i)}i∈ω and a Solovay test Z such that A must fail to pass one of them. We build
an approximation g(i, s) for g and assume by the Recursion Theorem that we are building Wm for
an infinite recursive set of indices for m. By speeding up the enumeration for Vi, we can assume
that for every i and s, µ(D(Ui,s, Vi,s)) ≤ 2−i. For each i, we reserve 2i + 1 indices m1, · · · ,m2i+1

for building Wg(i). We start by letting g(i, 0) equal the first index m1. We keep g(i, s) = m1

and let Wm1 copy Ui+1,s until we find some s1 such that µ(Wm1,s1) > 2−i. If this happens, we
then enumerate the clopen set D(Ui+1,s1 , Vi+1,s1) into Z, move on to the next index m2, and stop
building Wm1 . In general, if we are making our kth attempt at constructing Wg(i), we assume that
we already have reached stages s1, · · · , sk−1 and that we have stopped building Wm1 , · · · ,Wmk−1

.
We keep g(i, s) = mk and let Wmk

copy the clopen set [Ui+k,s]− [Wm1 ∪ · · · ∪Wmk−1
] until the first
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sk is found such that µ(Wmk,sk
) ≥ 2−i. We then enumerate a prefix-free set of strings representing

the clopen set D(Ui+k,sk
, Vi+k,sk

) into Z, move on to the next index mk+1, and stop building Wmk
.

It is not hard to see that for k 6= k′, [Wmk
] ∩ [Wmk′ ] = ∅. Therefore, we will have at most 2i

changes to g(i,−), which means that g is ω-r.e. and that we have allocated enough indices for the
construction of Wg(i). It is clear that µ(Wg(i)) ≤ 2−i for every i, so 〈Wg(i)〉i∈ω is a strict Demuth
test. Z is a Solovay test because for each Wg(i), we enumerate strings representing the clopen sets
D(Ui+1,s1 , Vi+1,s1) ∪ · · · into Z. The weight of these strings is at most 2−i, so

∑
σ∈Z 2−|σ| ≤ 1.

If A ∈ [Wg(i)] for almost every i, then there is a strict Demuth test that A does not pass. Suppose
that this is not the case and there are infinitely many i such that A 6∈ [Wg(i)]. We fix such an i
and let mk be the index for the final version of Wg(i). Since this is the final version, we must have
[Ui+k]−[Wm1∪· · ·∪Wmk−1

] = [Wg(i)]. However, A ∈ [Ui+k], which means that A ∈ [Wmj ] ⊆ [Ui+j,sj ]
for some j < k. Since A 6∈ [Vi+j ], it follows that A ∈ D(Ui+j,sj , Vi+j,sj ). Therefore, A extends some
string in Z enumerated for the sake of Wg(i). This means that A is not Martin-Löf random, so the
universal Martin-Löf test is a strict Demuth test which A does not pass. �

The above proposition lets us see that every Demuth random real is difference random. However,
the converse is not true.

Proposition 2.10. If A is weakly 2-random or Demuth random, then A is difference random. If
A is difference random, then A is Martin-Löf random. All inclusions are proper.

Proof. Let 〈D(Ui, Vi)〉i∈ω be a canonical d.r.e. test. Then ∩iD(Ui, Vi) = (∩i[Ui]) ∩ (2ω − ∪i[Vi]).
∩i[Ui] is a Π0

2 class and 2ω −∪i[Vi] is a Π0
1 class, so ∩iD(Ui, Vi) is a Π0

2 null class. This tells us that
every weakly 2 random is difference random. By Proposition 2.9, every Demuth random is difference
random since every strict Demuth test is a Demuth test. These inclusions are proper because weak
2-randomness and Demuth randomness are incomparable notions. There are ∆0

2 Demuth random
reals but not ∆0

2 weakly 2-random reals, so not every Demuth random real is weakly 2-random.
Furthermore, there is a weakly 2-random real that is not GL1, but every Demuth random real is
GL1 (see [13]), so not every weakly 2-random real is Demuth random.

Each difference random real is clearly Martin-Löf random. It is easy to see that no left r.e.
real is d.r.e. random: suppose that 〈αs〉s∈ω is a left r.e. approximation to a left r.e. real α. Let
Ui = {αs�(i+ 1) : s ∈ ω} and Vi = {αs�(i+ 1) : s ∈ ω and αs�(i+ 1) 6= αs+1�(i+ 1)}. Then
α ∈ ∩iD(Ui, Vi), which is a d.r.e. test, so α is not difference random. Perhaps the most obvious
example of such an α is Chaitin’s Ω. �

This gives us the following diagram of relationships between these classes. All subsets are proper.

2R ⊂
⊂

W2R

Demuth

⊂

⊂
DiffR ⊂ML

Figure 1. Relationships between classes of random reals.

We finally show that, as might be expected, there is no universal d.r.e. test.

Proposition 2.11. There is no d.r.e. test that is universal for the class of difference random reals.
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Proof. Suppose that 〈D(Ui, Vi)〉i∈ω is a universal d.r.e. test. If every Vi = ∅, then Ω passes
〈D(Ui, Vi)〉i∈ω but is not difference random. Hence there are some σ and i such that σ ∈ Vi.
This means that every real extending σ passes the test 〈D(Ui, Vi)〉i∈ω. Since σ_0ω is not difference
random, we get a contradiction. �

3. Characterizing the difference random reals within the Martin-Löf random
reals

We now characterize the Turing incomplete Martin-Löf random reals in terms of difference ran-
domness.

Theorem 3.1. The difference random reals are precisely the Martin-Löf random reals that are not
Turing complete.

Proof. By Lemma 2.9, if A is not difference random, then there is a strict Demuth test 〈Wg(i)〉i∈ω
such that A ∈ ∩iWg(i). We set 〈∅′s〉s∈ω as a recursive approximation to ∅′ and construct a Solovay
test E as follows. For each i and s such that i ∈ ∅′s − ∅′s−1, we add Wg(i,s),s to E. For each i

there is at most one s for which Wg(i,s),s is added to E, so
∑

σ∈E 2−|σ| < 1. If A is not Martin-Löf
random, then we are done. Otherwise, A ⊃ σ for finitely many σ ∈ E. Let n0 be the length of
the longest initial segment of A contained in E (so A�n0 ∈ E). We now A-recursively compute
whether i ∈ ∅′. We begin by searching for the first stage s such that A�n ∈ Wg(i,s),s for some n.
We know that such an s must exist since A ∈ [Wg(i)]. Then we claim that for every i > n0, i ∈ ∅′
if and only if i ∈ ∅′s. Otherwise, we would have i ∈ ∅′t − ∅′t−1 for some t > s. By construction,
E ⊇ Wg(i,t),t = Wg(i,s),t ⊇ Wg(i,s),s since g(i, s) = g(i, t) = g(i). Since µ(Wg(i,s),s) < 2−i, it follows
that n > i > n0. However, this means that A�n ∈ E, which contradicts our choice of n0.

Now we prove the other direction. Since every difference random real is Martin-Löf random, we
assume that A ≥T ∅′ and build a strict Demuth test 〈Wg(i)〉i∈ω such that A ∈ ∩iWg(i). We will
build an r.e. set F and use the Recursion Theorem to assume that F = Φ(A) for some Φ. We
partition ω into intervals Ii such that Ii has 2i members. We fix i and define g(i, s) and F on Ii.
For each 0 ≤ k ≤ 2i, we let Qk = {σ : Φσ�Ii ↓= 1k02i−k}. As in Proposition 2.9, we assume that
we are building Wm1 , · · · ,Wm2i+1

. We let Wmk
= Qk−1 for every 1 ≤ k ≤ 2i + 1 and note that the

Qks are all r.e. sets of finite strings. We let g(i) = mk for the least k such that µ(Qk−1) ≤ 2−i.
For each k ∈ Ii, we enumerate k into F whenever we find that µ(Qk−min(Ii)) > 2−i (and all smaller
k′ ∈ Ii are also in F ).

Now F is clearly an r.e. set. The function g is ω-r.e. via the obvious approximation g(i, s) because
for each i, the sets [Q0], . . . , [Q2i ] are pairwise disjoint. In fact g(i,−) changes no more than 2i

times. We certainly have µ(Wg(i)) ≤ 2−i by the definition of g(i). Again, by the fact that the
Qk are pairwise disjoint, 〈Wg(i+1)〉i∈ω is a strict Demuth test. Finally, we verify that for every i,
A ∈ [Wg(i)]. Let g(i) = mk. This means that for every 1 ≤ j < k, we have µ(Qj−1) ≥ 2−i and
consequently min Ii+j−1 ∈ F . In fact, 1k−102i−k+1 = F�Ii = Φ(A)�Ii, so A ∈ [Qk−1] = [Wg(i)]. �

We can relativize the notion of difference randomness to a real X in the natural way: an
X-d.r.e. test is a sequence 〈D(WX

g(i),W
X
h(i))〉i∈ω where g and h are recursive functions such that

µ(D(WX
g(i),W

X
h(i))) ≤ 2−i for every i. A real A is difference random relative to X if for every

X-d.r.e. test 〈D(UXi , V
X
i )〉i∈ω, A 6∈ ∩iD(UXi , V

X
i ). We can relativize the above theorem as follows.
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Corollary 3.2. Let A and X be reals. Then A is difference random relative to X if and only if A
is Martin-Löf random relative to X and A⊕X 6≥T X ′.
Proof. If we relativize the proof of Proposition 2.9, we can see that A is difference random relative
to X if and only if it passes every test of the form 〈WX

g(i)〉i∈ω, where the following conditions hold.

(1) There is some g̃ ≤T X such that for every i, lims g̃(i, s) = g(i) and the number of times
g̃(i,−) changes is recursively bounded.

(2) µ(WX
g(i)) < 2−i for every i.

(3) For every i and s such that g̃(i, s) 6= g̃(i, s+ 1), we have [WX
g̃(i,s+1)] ∩ [∪t≤sWX

g̃(i,t)] = ∅.
Now we simply relativize the proof of Theorem 3.1, paying attention to the applications of the
Recursion Theorem. �

4. Relationships with lowness classes

After a notion of randomness is well defined and explored, it is standard to consider properties
of reals that are antithetical to this randomness notion. These properties usually indicate weakness
in different ways and are sometimes called lowness properties. For instance, if R is the class of
reals that are random with respect to a certain notion, we say that a set A is low for the class R
if RA = R. This means that A is so feeble in terms of its derandomization power that it does not
help to make random reals appear to be nonrandom when it is used as an oracle. Another example
of a lowness property frequently considered in algorithmic randomness is that of being a base for
R: a set A is a base for R if there is some Z ≥T A such that Z ∈ RA. As is well known, if R is the
class of Martin-Löf random reals, then these two properties coincide with K-triviality [6, 12] . In
fact, Nies showed in [12] that every K-trivial real is actually superlow.s

After establishing difference randomness to be a very natural randomness notion, our attention
naturally turns towards the corresponding lowness properties. At this point, the reader might
be tempted to conjecture that the corresponding lowness notions for difference randomness might
coincide with K-triviality as they do in the case of lowness for weak 2-randomness [4, 8]. We show
a connection between the corresponding lowness notions for difference randomness and two other
well-known lowness classes arising in the study of K-triviality.

Theorem 4.1. Suppose that A is an r.e. set. Then A is a base for difference randomness if and
only if A is Martin-Löf coverable.

Proof. Suppose that A is a base for difference randomness, and let Z ≥T A be such that Z is
difference random relative to A. Then Z is difference random and therefore Martin-Löf random
and Turing incomplete by Theorem 3.1, so A is Martin-Löf coverable.

Now suppose that A is an r.e. set that is Martin-Löf coverable. Then, by Theorem 3.1, there is
some difference random Z ≥T A. Since every Martin-Löf coverable r.e. set is low for Martin-Löf
randomness, Z is Martin-Löf random relative to A. Furthermore, Z ⊕ A 6≥T A′, since otherwise,
we would have that Z ≡T Z ⊕A ≥T A′ ≥T ∅′. By Corollary 3.2, Z is difference random relative to
A, and A must be a base for difference randomness. �

Theorem 4.2. Suppose A is an r.e. set. Then A is low for difference randomness if and only if A
is not weakly Martin-Löf cuppable.

Proof. Suppose that A is an r.e. set that is low for difference randomness. We recall that if R
and S are classes of random reals, then Low(R,S) is the class of reals A such that R is a subset
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of SA. Then our A is in Low(W2R,ML) and thus it is K-trivial [4]. In particular, A must be
low. If A were weakly Martin-Löf cuppable, there would be a difference random real Z such that
Z ⊕ A ≥T ∅′ ≡T A′. Therefore, Z is not difference random relative to A and A is not low for
difference randomness, which gives us a contradiction.

Now suppose that A is an r.e. set that is not weakly Martin-Löf cuppable. Then A must be
low for Martin-Löf randomness. To see that A is low for difference randomness, we consider an
arbitrary difference random real Z. Since A is not weakly Martin-Löf cuppable, Z⊕A 6≥T ∅′. Since
A is low for Martin-Löf randomness, Z must be Martin-Löf random relative to A. Furthermore
since Z ⊕A 6≥T A′, by Corollary 3.2, Z is difference random relative to A. �

5. A martingale characterization of difference randomness

We should also consider the robustness of this randomness notion. Martin-Löf randomness can
be defined in three different ways: that of measure theory, that of computational complexity, and
that of unpredictability [10, 18]. We have only addressed the notion of n-r.e. randomness from
the perspective of measure theory. It is natural to ask whether equivalent definitions can be given
in terms of the other two perspectives. Here, we present an equivalent definition in terms of
unpredictability. We study a class of martingales—the difference martingales—which we will use
to characterize difference randomness.

Definition 5.1. A difference martingale is a martingale m : 2<ω 7→ R≥0 such that there are
recursive functions m1, m2, and b which map 2<ω × ω 7→ Q≥0 such that the following hold:

(i) For every σ and s, m1(σ, s+ 1) ≥ m1(σ, s). The same holds for m2 and b.
(ii) For every σ, m(σ) = limsm(σ, s), where m(σ, s) = m1(σ, s)−m2(σ, s).

(iii) For every σ and s, if m(σ, s) < b(σ, s), then m(τ, t) ≤ m(σ, s) for every t ≥ s and τ ⊇ σ.
(iv) For everyX ∈ 2ω, there is a constant c ∈ ω such that lim supn b(X�n) ≤ lim supnm(X�n)+c.

Here b(σ) = lims b(σ, s).
We call the triple (m1,m2, b) an (effective) presentation of m. We say that a difference martingale m
succeeds on a real X ∈ 2ω if there is a presentation (m1,m2, b) of m such that lim supn b(X�n) =∞.

We would expect that if d.r.e. randomness can be characterized in terms of martingales, then
an obvious candidate is the class of martingales which are “d.r.e.” in some sense. For instance, we
could consider martingales which are the difference of two r.e. martingales, or we could consider
martingales where the value of m(σ) is uniformly a d.r.e. real. Neither of these candidates is good
enough because if we were only given a martingale where m(σ) can be approximated in a “d.r.e.”
fashion, then m(σ) may rise above and fall below a threshold arbitrarily many times. If we were
trying to build a d.r.e. test to capture the set of reals on which m succeeds, then we would not be
able to correctly determine when to remove σ from the test. For this reason, we need a martingale
with a “d.r.e.” approximation and an “r.e.” lower bound for the value of m.

Conditions (i) and (ii) in Definition 5.1 say that m(σ) can be approximated as the difference of
two increasing sequences (though m1(σ, s) and m2(σ, s) can be unbounded as s → ∞.) Similarly,
we can define b(σ) as lims b(σ, s) for every σ and approximate it effectively from below. Condition
(iii) says that b(σ) serves as a partial lower bound for m(σ) in the following sense. Once m(σ, s)
drops below b(σ, s), then m(τ) has to stay uniformly bounded in the cone above σ. In other words,
once the lower bound is violated at some node σ, then the martingale stops betting in the cone
above σ. This tells us that we cannot have success on any real extending σ, so we may remove
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σ from our d.r.e. test. Finally, condition (iv) says that b serves as a lower bound for m when the
values along infinite strings are considered. In other words, if an infinite string X wins in the sense
of having unbounded capital as calculated using b(X�n), then X has to win against the martingale,
too.

Theorem 5.2. A real A is difference random if and only if no difference martingale succeeds on
it.

Proof. We first prove the easy direction. Assume that there is a difference martingale that succeeds
on A, and fix such a martingale m and its presentation (m1,m2, b). Then lim supn b(A�n) =∞. For
each x ∈ ω, let Ux = {σ ∈ 2<ω | ∃s(b(σ, s) ≥ 2xm(∅))} and Vx = {σ ∈ Ux | ∃s(m(σ, s) < b(σ, s))}.
For each x, let T be the set of all σ ∈ Ux − Vx such that no prefix of σ is in Ux − Vx. Clearly,
[T ] ⊇ D(Ux, Vx), and T is a prefix-free set of strings. For each σ ∈ T , we have m(σ) ≥ 2xm(∅), and
so µ(D(Ux, Vx)) ≤

∑
σ∈T 2−|σ| ≤ 2−x. The last inequality follows by the usual counting argument.

Furthermore, A ∈ D(Ux, Vx) for every x because of conditions (ii) and (iv) in Definition 5.1, so A
is not difference random.

Now suppose A ∈ ∩iWg(i) for a strict Demuth test 〈Wg(i)〉i∈ω. We may assume that we have a
presentation 〈Wg(i,s)〉 in which for every i and s, Wg(i,s) is prefix free and the test is nested: for all
i and s and for all σ ∈ Wg(i+1,s), there is τ ⊆ σ such that τ ∈ Wg(i,s). In fact, by the Recursion
Theorem, we can see that for all i, s, and t and for all σ ∈ Wg(i+1,s),t, there is τ ⊆ σ such that
τ ∈Wg(i,s),t. We define the functions mx

1 , mx
2 , and bx uniformly in x as follows. For each σ and s,

mx
1(σ, s) = µ(∪t≤s[Wg(x,t),s] | σ),

mx
2(σ, s) = µ(∪t≤s− [Wg(x,t),s] | σ),

bx(σ, s) = 1 if σ ⊇ τ for some τ ∈ ∪x<t≤sWg(x,t),s and 0 otherwise

where µ(C | σ) is the conditional probability µ(C ∩ [σ]) · 2|σ| and s− is the largest stage less than
s where g(x, s−) 6= g(x, s− + 1). If this does not exist, then let s− be −1. Clearly mx(σ) =
limsm

x(σ, s) exists, where mx(σ, s) := mx
1(σ, s) − mx

2(σ, s), since the values of 〈mx
1(σ, s)〉s and

〈mx
2(σ, s)〉s are all bounded above by 1. It is easy to verify that mx is a martingale by rearranging

the limits. Finally we claim the following:

(†) For every σ, s,and x, if mx(σ, s) < bx(σ, s), then my(η, t) = 0 for every t ≥ s, η ⊇ σ, and y ≥ x.

Furthermore, by(η, t) = 0 for every t ≥ s, η ⊇ σ, and y ≥ s.
If mx(σ, s) < bx(σ, s) for some σ, x, and s, then bx(σ, s) = 1, which means that σ ⊇ τ for some
τ ∈ ∪t≤sWg(x,t),s. Now if τ 6∈ ∪t≤s−Wg(x,t),s, then we must have [σ] ∩ ∪t≤s− [Wg(x,t),s] = ∅. This
means that mx

2(σ, s) = 0 and mx
1(σ, s) = 1, which is a contradiction. Therefore, we must have

τ ∈ ∪t≤s−Wg(x,t),s, which means that mx(η, t) = 0 for any η ⊇ σ and every t ≥ s.
Now generally for y > x and η ⊇ σ, we must have [η] ∩ [Wg(y,t)] = ∅ for every t ≥ s because

of our assumption that the strict Demuth test is nested. This means that for every t ≥ s, [η] ∩
∪u≤t[Wg(y,u)] = [η] ∩ ∪u≤s− [Wg(y,u)] where s− is now the last change prior to s in the version
of Wg(y). In fact we also have [η] ∩ ∪u≤t[Wg(y,u),t] = [η] ∩ ∪u≤s− [Wg(y,u),t], and this implies that
my(η, t) = 0. To see the second part of (†), we note that if by(η, t) = 1 for y, t ≥ s and η ⊇ σ, then
[η] ⊆ [Wg(x,u)] for some u > y ≥ s, which is impossible since a comparable [τ ] is already contained
in ∪u≤s− [Wg(x,u)]. This proves (†).
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Now let m(σ) =
∑

x∈ωm
x(σ). m(σ) is defined because for every σ and x, 0 ≤ mx(σ) ≤

2min{|σ|−x,0}, and m is a martingale because each mx is. Now we define an effective presentation of
m as follows.

m1(σ, s) =
∑
x≤s

mx
1(σ, s)

m2(σ, s) =
∑
x≤s

mx
2(σ, s)

b(σ, s) =
∑
x≤s

bx(σ, s)

We need to verify that m1,m2 and b represent m. Condition (i) is trivial. For condition (ii),
we need to see that m(σ) = lims(m1(σ, s) − m2(σ, s)). It suffices to show that

∑
xm

x(σ) =
lims

∑
x≤sm

x(σ, s). Given any ε > 0, fix an s0 such that
∑

x≤s0 m
x(σ) > m(σ) − ε/2. We then

proceed to pick a t0 > s0 such that for each x ≤ s0 and t ≥ t0, we have |mx(σ, t)−mx(σ)| < ε/2s0.
This shows that

∑
xm

x(σ) ≤ lims
∑

x≤sm
x(σ, s). To prove the other direction, note that for every

s, x, and σ, we have mx(σ, s) = µ(Wg(x,s),s | σ) < 2|σ|−x. Now let M = lims
∑

x≤sm
x(σ, s). Given

ε > 0, we pick s0 such that for every s ≥ s0, we have
∑

x≤sm
x(σ, s) > M − ε/3. Fix r > s0 such

that 2|σ|−r+1 < ε/3 and fix t0 > r such that for every x < r we have mx(σ, t0) < mx(σ) + ε/3r.
Now ∑

x<r

mx(σ) ≥

(∑
x<r

mx(σ, t0)

)
− ε

3
≥

∑
x≤t0

mx(σ, t0)

− 2ε
3
> M − ε,

so
∑

xm
x(σ) ≥M .

For condition (iii), we fix a σ and s such that N + 1 = b(σ, s) > m(σ, s). It is not hard to see
that if bx+1(σ, s) = 1, then bx(σ, s) = 1, again using the assumption that the strict Demuth test is
nested. Hence bx(σ, s) = 1 for all x ≤ N . Fix the least x ≤ N such that mx(σ, s) < 1 = bx(σ, s).
Now, by the minimality of x, we must have my(σ, s) = 1 for every y < x. Applying (†), we get that
for any t ≥ s and η ⊇ σ,

m(η, t) =
∑
y≤t

my(η, t) =
∑
y<x

my(η, t) ≤ x ≤
∑
y<x

my(σ, s) =
∑
y≤s

my(σ, s) = m(σ, s).

Finally, we verify property (iv). Fix an X ∈ 2ω. We only need to show that if lim supn b(X�n) =∞,
then lim supnm(X�n) = ∞. In fact, it is easy to see that if lim supn b(X�n) = ∞, then b serves
as a true lower bound for m along X: If b(σ) > m(σ) for some σ ⊂ A, then there are some s and
x where bx(σ, s) > mx(σ, s). By the second part of (†), for any η ⊇ σ, b(η) ≤ s + 1 which is a
contradiction. Now it is easy to see that lim supn b(A�n) =∞, so m succeeds on A. �

We note that we have not discussed the possibility of a characterization of difference randomness
in terms of initial-segment complexity. While we have considered several possibilities, it seems that
the class of Turing machines involved always either fails to work or is so far removed from any class
previously considered that we cannot accept it as a reasonable characterization.
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6. Conclusion

The study of n-r.e. randomness allows us to separate the ideas involved in measure-theoretic
definitions of randomness in a way that Martin-Löf randomness cannot. Is the complexity of
the way the tests are generated the most important thing (naive n-r.e. randomness), or is it the
complexity of the neighborhoods they determine (n-r.e. randomness)?

In each case, the hierarchy of n-r.e. randomness notions collapses for n ≥ 2. Therefore, once
an element of a test can be removed even once, the particular number of additions and removals
is irrelevant. In the case of naive n-r.e. randomness, we find that it is equivalent to the well-
investigated notion of 2-randomness. This makes a certain amount of intuitive sense: we are
allowed to change our minds about the presence of any basic open set in any element Vi of the test
arbitrarily many times regardless of n, so we can approximate any Martin-Löf test recursive in ∅′
by a naive n-r.e. test for any n ≥ 2.

However, when we restricted the number of times we can change our minds about the presence
of a basic open set in an element Vi to some particular n, we obtained a characterization of the
Turing incomplete Martin-Löf random reals. This natural class of reals had never before been
characterized solely in terms of a randomness notion. We hope that our characterization will shed
some light on the other properties of this class as well as further the study of the properties of the
K-trivial reals.
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