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Abstract. We discuss the difficulties in stating an analogue of the
Church-Turing thesis for algorithmic randomness. We present one pos-
sibility and argue that it cannot occupy the same position in the study
of algorithmic randomness that the Church-Turing thesis does in com-
putability theory. We begin by observing that some evidence compara-
ble to that for the Church-Turing thesis does exist for this statement:
in particular, there are other reasonable formalizations of the intuitive
concept of randomness that lead to the same class of random sequences
(the Martin-Löf random sequences). However, we consider three proper-
ties that we would like a random sequence to satisfy and find that the
Martin-Löf random sequences do not necessarily possess these proper-
ties to a greater degree that other types of random sequences, and we
further argue that there is no more appropriate version of the Church-
Turing thesis for algorithmic randomness. This suggests that consensus
around a version of the Church-Turing thesis in this context is unlikely.

Keywords: Church-Turing thesis · algorithmic randomness · computabil-
ity theory.

1 A potential parallel

In 1948, Turing wrote that “[I]t is found in practice that [Turing machines] can
do anything that could be described as ‘rule of thumb’ or ‘purely mechanical.’
This is sufficiently well established that it is now agreed amongst logicians that
‘calculable by means of a [Turing machine]’ is the correct accurate rendering of
such phrases” ([30], p. 4). We take this as our formulation of the Church-Turing
thesis and discuss the prospects for identifying an analogous statement in the
context of algorithmic randomness.

Algorithmic randomness is the study of the formalization of the intuitive
concept of randomness using concepts from computability theory. We begin by
considering elements of the Cantor space (the space of infinite binary sequences,
or 2ω). Therefore, a statement of the following form would be a direct parallel
to Church’s thesis:

S : If an infinite binary sequence can be described as random, then it
.
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The question, of course, is which mathematical property should be used to
complete this statement. Is there one that occupies the same space in the uni-
verse of randomness as calculability by a Turing machine does in the universe
of functions? We argue that, while there seems to be such a characterization at
first glance, it appears inappropriate on further consideration, as do all other
reasonable possibilities.

1.1 An initial characterization of randomness

The first formal definitions of randomness were provided in the mid-1960s and
early 1970s. We review these definitions briefly below. First, though, we explain
our notation. We will typically denote finite binary strings by lowercase Greek
letters and infinite binary sequences by uppercase Roman letters. The length
of a finite binary string τ is denoted by |τ |, and the measure of a class C in
Cantor space, µ(C), is given by the Lebesgue measure in which the basic open
set [σ] consisting of all infinite binary sequences extending the finite string σ has
measure 2−|σ| (in other words, the “coin-flip” measure).

The first approach to be fully defined is due to Martin-Löf and is based on
effectivized statistical tests [19]. We recall that a Σ0

1 class in Cantor space is one
that is definable as {A | (∃n)R(A�n)} for a computable relation R.

Definition 1. A Martin-Löf test is a sequence 〈Vi〉 of uniformly Σ0
1 classes

of Cantor space such that µ(Vi) ≤ 2−i. An infinite sequence A is said to be
Martin-Löf random if for any Martin-Löf test 〈Vi〉, A 6∈ ∩Vi. We say that such
a sequence is not captured by any Martin-Löf test and thus passes all of them.

This is the candidate I propose to complete S : “passes all Martin-Löf tests.”
The second approach is based on Kolmogorov complexity, initially defined

by Kolmogorov in 1965. The prefix-free variant is due to Levin and Chaitin.

Definition 2. [16,17,4] The prefix-free Kolmogorov complexity of a finite bi-
nary string σ is defined as K(σ) = min{|τ | | U(τ) = σ}, where U is a universal
prefix-free machine.

The third approach is probabilistic and is based on Lévy’s definition of a
martingale [18]:

Definition 3. A c.e. function d : 2<ω → R≥0 is a c.e. martingale if it obeys the
fairness condition

d(σ) =
d(σ0) + d(σ1)

2

for all σ.

Martin-Löf randomness can be defined using all of these approaches.

Theorem 1 ([27,28,4]). The three following properties are equivalent for an
infinite binary sequence A:
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1. A is Martin-Löf random.
2. There is a constant c such that for all n ∈ ω, K(A�n) ≥ n−c: the Kolmogorov

complexity of each initial segment of A is never much smaller than its length.
3. For any c.e. martingale d, lim supn d(A�n) is finite: it is not possible to win

arbitrarily large amounts of capital by betting on A using a c.e. martingale,
and thus no such d succeeds on A.

We note that there is not only a universal prefix-free machine but also a
universal Martin-Löf test and a universal c.e. martingale.

This suggests that we can justify completing S with “passes a Martin-Löf
test” with evidence similar to that given for Church’s thesis: these very different
approaches to formalizing the intuitive notion of randomness result in the same
class of sequences being considered random just as Turing machines, register ma-
chines, general recursive functions, and the λ-calculus do for partial computable
functions; Porter refers to this as an equivalence-as-evidence-of-capturing (EEC)
claim [23]. However, we find, as Porter did, that the existence of other “loci of
definitional equivalence” greatly weakens the value of this fact.

2 Other randomness notions

It was recognized in the early 1970s that the three characterizations of Martin-
Löf randomness given above could be modified slightly to obtain other classes of
sequences that could also reasonably be called random. For instance, we can de-
fine Schnorr randomness in each of these three ways by making each component
of the definition computable rather than merely approximable from below:

– Rather than consider all Martin-Löf tests, we consider only Schnorr tests:
those whose components have measure exactly 2−i for the appropriate i
rather than no larger than 2−i [28].

– Rather than consider all prefix-free machines, we consider only prefix-free
machines whose domains have computable measure [5].

– Rather than consider all c.e. martingales, we consider only computable mar-
tingales, and our success condition changes slightly: a martingale d h-succeeds

on A if lim supn
d(A�n)
h(n) =∞. Here, h is taken to be an order function: a com-

putable, nondecreasing, unbounded function on ω [27,28].

The resulting characterizations of randomness are, at worst, only slightly
more complicated than the characterizations of Martin-Löf randomness we have
already seen. Any increased complexity of the definitions results from the fol-
lowing facts: (1) there is no universal prefix-free computable measure machine,
Schnorr test, or computable martingale, and (2) we have modified the definition
of a martingale’s success to reflect the idea that it may be possible for a mar-
tingale’s values to increase unboundedly but so slowly that we cannot recognize
this increase computably.

Schnorr randomness is certainly no stronger than Martin-Löf randomness: if
we consider the test definitions, we can see that a sequence has to pass fewer
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tests in order to be Schnorr random than to be Martin-Löf random. In fact, it
is a strictly weaker notion [28].

There is also a well-studied randomness notion strictly between Martin-Löf
and Schnorr randomness: computable randomness, first described by Schnorr in
[27,28]. Its characterizations in terms of Kolmogorov complexity and tests are far
more complicated than those of either Martin-Löf or Schnorr randomness (see
sections 7.1.4 and 7.1.5 of [6]), but its martingale characterization is as simple as
that of Martin-Löf randomness: one simply substitutes “computable martingale”
for “c.e. martingale.”

The existence of these other notions of randomness would not necessarily
preclude the analogy to Church’s thesis given above. After all, computability
theorists routinely investigate weak truth table reducibility and truth table
reducibility in addition to Turing reducibility and don’t consider this to con-
traindicate Church’s thesis. We may ask whether the same sort of relationship
holds between Turing, weak truth table, and truth table functionals as between
Martin-Löf, computable, and Schnorr randomness.

At first, this analogy seems reasonable. Turing reducibility places no require-
ments on the convergence of the functional; weak truth table reducibility requires
convergence within a computable bound, if such exists; and truth table reducibil-
ity requires convergence for all inputs. We can see that the characterizations of
Martin-Löf randomness involve c.e. martingales and tests with components and
prefix-free machines with domains that need only have lower semicomputable
measures. This degree of approximability is precisely that which can be obtained
from a Turing functional. The characterizations of computable randomness and
Schnorr randomness, on the other hand, require computable martingales, and
the components of Schnorr tests have computable measures, which better corre-
sponds to weak truth table or truth table functionals.

While this suggests that Martin-Löf randomness is analogous to Turing re-
ducibility and thus that “passing a Martin-Löf test” seems analogous to “being
calculable by a Turing machine,” we should investigate further and determine
how far this analogy extends. While there are rich structural results for the
Turing, weak truth table, and truth table degrees, it is the Turing degrees that
have found the widest applicability to branches of computability beyond degree
theory. The author knows of no results concerning truth table degrees and com-
putable structure theory or weak truth table degrees and computable analysis,
for instance. This could be a further sort of evidence for Church’s thesis: that
the degree structure generated by Turing functionals is the most generally ap-
plicable to other aspects of computability theory. This leads us to ask whether
a similar statement can be made about Martin-Löf randomness.

3 Three desiderata

In this section, we will consider the question of applicability discussed above as
well as the question of whether Martin-Löf randomness most aptly captures our
intuitions about random sequences. It has certainly been argued that Martin-
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Löf randomness does not capture these intuitions, most notably (and earliest)
by Schnorr in [28]. We discuss some of these considerations here.

3.1 Decompositions and combinations of random sequences

We begin by considering what happens if we computably decompose a random
sequence: must this result in random sequences? Or, if we interleave two random
sequences, under what circumstances will the resulting sequence be random?
These questions were answered for Martin-Löf randomness by van Lambalgen
[15] and are closely related to the role of relativization in computability.

Theorem 2 (van Lambalgen’s Theorem). The following are equivalent for
any two Martin-Löf random sequences A and B:

1. A⊕B is Martin-Löf random.
2. A is Martin-Löf random relative to B and B is Martin-Löf random relative

to A.

In short, a sequence is Martin-Löf random if, when you decompose it into its
“even” and “odd” bits, each half is not only Martin-Löf random but Martin-Löf
random relative to the other. This result is frequently mentioned as a desidera-
tum for a randomness notion (see, for instance, Section 7.1.2 in [6]) and is thus a
reasonable place for us to begin. We should now ask if computable and Schnorr
randomness have this property as well.

The answer is complicated. It is straightforward to see that the forward
direction of the theorem does not hold for computable or Schnorr randomness
(see, for instance, Kjos-Hanssen’s argument in [22]). However, it becomes more
complicated when we consider the backward direction. This direction was long
claimed to hold for both computable and Schnorr randomness with “essentially
the same proof” as for Martin-Löf randomness ([6], p. 276). However, no proof
was provided until Franklin and Stephan gave one for Schnorr randomness [10],
and a few years later, Bauwens proved that this direction does not actually hold
for computable randomness [1].

However, in keeping with the analogy between stronger reductions and weaker
forms of randomness described in Section 2, it turns out that this theorem holds
for all three of these randomness notions if we apply a different relativization
[20,21]. This suggests that while Martin-Löf randomness initially seems to satisfy
one of our intuitions about randomness in a way that computable and Schnorr
randomness simply don’t, it seems that our intuition is satisfied for the latter
two as well when we use a more appropriate framework. Whether this more
appropriate framework is as natural, though, is not apparent.

3.2 Computational strength

Now we consider the computational strength of random sequences. It is fair to
say that no random sequence should be computable: if it were, then we could
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predict it perfectly. Thus, random sequences should possess some noncomputable
information. However, we can also argue that no random sequence should be very
powerful computationally: if a sequence is random, then we should not be able
to make any practical use of the information it possesses, and therefore it should
not be contained in a powerful Turing degree.

However, Kučera proved that every Turing degree computing 0′ contains a
Martin-Löf random sequence [14]. Furthermore, Stephan proved that the Martin-
Löf random sequences that cannot compute 0′ are computationally weaker in
another way: they are precisely the Martin-Löf random sequences that cannot
compute a complete extension of Peano Arithmetic [29]. These results led to
Hirschfeldt’s argument that there are two types of Martin-Löf random sequences:
those that are computationally weak and thus truly random, and those that are
computationally strong and therefore “know enough” to pretend to be random
(see [6], pp. 228–229).

If we take a measure of computational uselessness as a desideratum for a
randomness notion, it is clear that not only does Martin-Löf randomness not
meet this criterion, but neither do Schnorr and computable randomness since
every Martin-Löf random sequence is Schnorr random and computably random.
However, there are other randomness notions, and one of these satisfies this
intuition perfectly.

Difference randomness was introduced by Franklin and Ng in [9]. This no-
tion is most naturally defined using the test approach: while each component of
a Martin-Löf test is a Σ0

1 class, each component of a difference test is a difference
of two Σ0

1 classes. This means that, rather than creating a component by simply
adding open neighborhoods [σ] to the class, we create a component by adding
such neighborhoods and then perhaps removing them or their subneighborhoods.
Franklin and Ng further proved that the difference random sequences are pre-
cisely the Martin-Löf random sequences that cannot compute 0′ and thus that
difference randomness satisfies this intuition in a way no other notion does [9].1

However, difference randomness does not satisfy many of the other criteria we
have discussed so far: while its test definition is straightforward to state, its mar-
tingale definition is rather complicated, and no Kolmogorov complexity-based
definition of it is known at this point.

3.3 Applications

Finally, we turn our attention to the last desideratum: we would like our notion
of randomness to appear naturally in other branches of computability theory.
We consider the case of computable analysis, the subfield that is most closely
connected to algorithmic randomness as of this writing. Since many theorems
in analysis hold on a conull set and all but measure 0 many points in a space

1 We note that there are other randomness notions that also exhibit computational
weakness, e.g., weak 2-randomness. However, we discuss difference randomness here
because the difference random sequences can be identified as the Martin-Löf random
sequences that are computationally weak in these two standard senses.
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are random by any reasonable definition of randomness, it is natural to try to
characterize the points in a computable probability space for which a certain
theorem holds as the points in that space that are random under a certain
definition.2

We consider several theorems as case studies, beginning with Birkhoff’s er-
godic theorem; this theorem states that for any measurable subset of a prob-
ability space, an ergodic transformation will map almost every point into that
subset with a frequency proportional to the measure of the subset.

Theorem 3 (Birkhoff’s ergodic theorem). Let (X,µ) be a probability space,
let T : X → X be ergodic, and let E be a measurable subset of X. Then for almost
all x ∈ X,

lim
n→∞

|{i | i < n and T i(x) ∈ E}|
n

= µ(E).

To connect this theorem to algorithmic randomness, we must first frame it
as a statement about individual points in the space. While the definition of a
Birkhoff point arises naturally from Birkhoff’s ergodic theorem, weak Birkhoff
points are appropriate for a generalization of Birkhoff’s ergodic theorem for
measure-preserving functions.

Definition 4. A point x ∈ X is a Birkhoff point for T with respect to a class
of sets C if for all E ∈ C,

lim
n→∞

|{i | i < n and T i(x) ∈ E}|
n

= µ(E).

A point x ∈ X is a weak Birkhoff point for T with respect to a class of sets C if
for all E ∈ C, the above limit simply exists.

We can now consider a theorem template; note that in order to state such a
theorem precisely, we must include the type of transformation under consider-
ation (ergodic or measure preserving) and the class of sets under consideration
(computable or lower semicomputable).

Theorem template 1 A point is a (weak) Birkhoff point for computable
T with respect to sets if and only if it is random.

We synthesize the known results in Table 1.
We now turn our attention to differentiability and convergence of Fourier

series; differentiability is considered in more depth in this context by Porter in
[24]. We again have a theorem template, and in these cases, we only need to
know what sort of functions we are considering the differentiability of or the
Fourier series of.

2 The reader may have noted that we are working in a general computable probability
space rather than the Cantor space. This is possible because any computable proba-
bility space is isomorphic to the Cantor space in every relevant way and our notions
of randomness transfer naturally [13].
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Table 1. Birkhoff’s ergodic theorem and randomness

Transformation
Ergodic Measure-preserving

Computable Schnorr [12] Martin-Löf [31,11]

Lower semicomputable Martin-Löf [2,7] ?

Theorem template 2 Every computable function f is differentiable at
z ∈ [0, 1] if and only if z is random.

Theorem template 3 Every computable function f ’s Fourier series
converges at t0 if and only if t0 is random.

Brattka, J. Miller, and Nies proved that each computable nondecreasing func-
tion f : [0, 1] → R is differentiable at a point z if and only if z is computably
random and that each computable function f : [0, 1] → R of bounded variation
is differentiable at a point z if and only if z is Martin-Löf random [3]; Rute has
a similar result for Schnorr randomness that is more complicated to state [25].
Later, Franklin, McNicholl, and Rute proved that the convergence of a Fourier
series for a computable function f in Lp[−π, π] at a point t0 is essentially equiv-
alent to the Schnorr randomness of t0 [8].3

Both Schnorr randomness and Martin-Löf randomness make repeated ap-
pearances in this area; computable randomness has appeared less often. It does
not appear that Martin-Löf randomness is primary in this context, and in fact
Rute has argued that Schnorr randomness “stands out” as having “very strong
connections to constructive and computable measure theory” ([26], p. 60).

4 Conclusion

It seems clear that Martin-Löf randomness does not hold the primacy of place in
the context of algorithmic randomness that Turing functionals do in the context
of basic computability. While Turing functionals are by far the most useful kind
in classical computability theory, it seems that the same is not true for Martin-
Löf random sequences in algorithmic randomness. While Martin-Löf randomness
is straightforwardly defined in all the frameworks we consider and Martin-Löf
random sequences can be decomposed or combined into other Martin-Löf random
sequences as expected, it lacks the desired computational weakness and certainly
does not stand out in the context of applications to computable analysis.

This suggests that giving a formal definition of Martin-Löf randomness is not
the correct way to complete our statement S. It does not seem, though, that a for-
mal definition of any other randomness notion would be correct, either: there is
no more consistent evidence for any of the other notions we’ve discussed. There-
fore, one of the most important forms of evidence for the Church-Turing thesis

3 There is a subtlety in this result in that an incomputable function may be computable
as a vector, hence the “essentially.”
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is missing in the context of algorithmic randomness, and we cannot reasonably
provide an equivalent version for this context.

I suggest that this failure is due to the fact that randomness is a higher-order
property than computability. To define a randomness notion formally, we need
to state the level of computability of the measures of the test components, the
measures of the prefix-free machines, or the martingales and we may need con-
sider the martingale’s rate of growth. Porter presents an excellent analysis of the
ingredients of a formal definition of a randomness notion in [23]: each definition
must have a hallmark of randomness, a collection of underlying resources, and
an implementation of these resources. With so many factors in play, it seems
unlikely that we will ever have consensus around a version of the Church-Turing
thesis for algorithmic randomness.
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