
DEGREES OF CATEGORICITY AND THE
HYPERARITHMETIC HIERARCHY

BARBARA F. CSIMA, JOHANNA N. Y. FRANKLIN,
AND RICHARD A. SHORE

Abstract. We study arithmetic and hyperarithmetic degrees of
categoricity. We extend a result of Fokina, Kalimullin, and R.
Miller to show that for every computable ordinal α, 0(α) is the
degree of categoricity of some computable structure A. We show
additionally that for α a computable successor ordinal, every de-
gree 2-c.e. in and above 0(α) is a degree of categoricity. We further
prove that every degree of categoricity is hyperarithmetic and show
that the index set of structures with degrees of categoricity is Π1

1

complete.

1. Introduction

Though classically two structures are considered the same if they are
isomorphic, in computable model theory we must distinguish between
particular presentations of a structure, since they may have different
computable properties. We say a structure is computably categorical,
if between any two computable presentations that are isomorphic, there
exists a computable isomorphism. For example, the structure (η,<),
the countable dense linear order without endpoints, is easily seen to
be computably categorical since the usual back-and-forth isomorphism
can be constructed computably between computable copies. However,
there are many computable structures that are not computably cate-
gorical. A well-known example is the structure (ω,<). It is easy to

construct a computable copy, N̂ , of (ω,<) such that any isomorphism
between it and the standard copy, N , computes the halting set. It is
also easy to see that in order to construct an isomorphism between two
copies of (ω,<), all we need to do is identify the least element of each

Date: May 28, 2012.
B. Csima was partially supported by Canadian NSERC Discovery Grant 312501.

R. Shore was partially supported by NSF Grant DMS-0852811 and John Templeton
Foundation Grant 13408. This project was started by B. Csima and R. Shore
while the former was visiting MIT, and we thank them for their hospitality. B.
Csima would also like to thank the Max Planck Institute for Mathematics in Bonn,
Germany for a productive visit.

1

2 CSIMA, FRANKLIN, AND SHORE

order, then the next element of each order, and so on. These are Σ0
1

questions, so 0′ can certainly build an isomorphism. This leads us to
recall the relativized definition of computable categoricity.

Definition 1.1. A computable structure C is d-computably categorical
for a Turing degree d if, for every computable A ∼= C, there is a d-
computable isomorphism from C to A.

We have observed above that the structure (ω,<) is not only 0′-
computably categorical, but that if c is such that (ω,<) is c-computably
categorical, then c ≥ 0′ (since, in particular, c computes an isomor-

phism between N and N̂). Thus, for the structure (ω,<), the degree
0′ exactly describes the difficulty of computing isomorphisms between
copies of the structure.

This natural idea of a “degree of categoricity” for a computable struc-
ture was first introduced by Fokina, Kalimullin and Miller in [2].

Definition 1.2. [2] A Turing degree d is said to be the degree of cat-
egoricity of a computable structure C if d is the least degree such that
C is d-computably categorical. The degree d is a degree of categoricity
if it is the degree of categoricity of some computable structure.

So far, every known degree of categoricity d has the following addi-
tional property: There is a structure C with computable copies C1 and
C2 such that not only does C have degree of categoricity d, but every
isomorphism f : C1 ∼= C2 computes d. If a degree of categoricity has
this property, we say it is a strong degree of categoricity.

In [2], Fokina, Kalimullin, and Miller proved that for all m < ω, 0(m)

(and, in fact, any degree 2-c.e. in and above 0(m)) is a strong degree
of categoricity, as is 0(ω). They prove the results first for m = 1 and
then use relativization and Marker’s extensions [5] to transfer them to
all m < ω. In the case for ω, they paste together the structures for
the 0(m). In this paper, we give direct constructions by effective trans-
finite recursion that extend their results through the hyperarithmetic
hierarchy. That is, in Theorem 3.1 we show that for every computable
ordinal α, 0(α) is a strong degree of categoricity, and in Theorem 3.2
that, given the additional assumption that α is a successor ordinal, so
are all degrees d that are 2-c.e. in and above 0(α). We then go on to
show in Theorem 4.1 that any degree of categoricity must be hyper-
arithmetic. We use this to show that the index set of structures with
degrees of categoricity, which at first glance seems no better than Σ1

2,
is actually Π1

1. We then use our result that degrees of the form 0(α)

are all degrees of categoricity to show that this index set is actually Π1
1

complete in Theorem 4.2.

DEGREES OF CATEGORICITY 3

1.1. Notation and conventions. As many of the results in this paper
use structures defined in Hirschfeldt and White [4], we will adopt many
of their conventions. In particular, we will use Ash and Knight’s [1]
terminology in discussing the hyperarithmetic hierarchy. For general
references see Harizanov [3] for computable structure theory, Soare [8]
for computability theory and Sacks [7] for hyperarithmetic theory.

Definition 1.3. A system of notations for ordinals is comprised of a
subset O of the natural numbers, a function ||O that maps each element
of O to an ordinal, and a strict partial order <O on O. In particular,

(1) O contains 1, and |1|O = 0.
(2) If a ∈ O is a notation for the ordinal α, then 2a ∈ O and
|2a|O = α + 1. For b ∈ O, we let b <O 2a if either b <O a or
b = a.

(3) Given a limit ordinal λ, we say that the eth partial computable
function ϕe defines a fundamental sequence for λ if it is total,
ϕe(k) ≤O ϕe(k + 1) for all k, and λ is the least upper bound of
the ordinals |ϕe(k)|O. In this case, 3 · 5e ∈ O and |3 · 5e|O = λ.
For b ∈ O we will set b <O 3 · 5e if there exists k such that
b <O ϕe(k).

For technical convenience, Hirschfeldt and White also require in [4]
that the fundamental sequences contain only successor ordinals and
have 1 as a first element. We assume without loss of generality that all
members of O have this property.

Definition 1.4. For a ∈ O we define H(a) by effective transfinite
recursion as follows:

(1) H(1) = ∅,
(2) H(2a) = H(a)′, and
(3) H(3·5e) = {〈u, v〉 | u <O 3·5e & v ∈ H(u)} = {〈u, v〉 | ∃n(u ≤O

ϕe(n) & v ∈ H(u))}.
It is a result of Spector, see [1], that for a computable ordinal α

(i.e., one with a notation in O), the Turing degree of H(a) when a is
a notation for α does not depend on the choice of a. It is denoted by
0(α).

Now we define the hyperarithmetic hierarchy in terms of computable
infinitary formulas.

Definition 1.5. A Σ0 (Π0) index for a computable predicate R(f, n)
is a triple 〈Σ, 0, e〉 (〈Π, 0, e〉) such that e is an index for R. If α is
a computable ordinal, a Σα index for a predicate R(f, n) is a triple
〈Σ, a, e〉 such that a is a notation for α and e is an index for a c.e. set

4 CSIMA, FRANKLIN, AND SHORE

A1 E1

Figure 1. A1 and E1.

of Πβk indices for predicates Qk(f, n, x) such that βk < α for all k < ω
and

R(f, n)⇔
∨
k<ω

(∃x)Qk(f, n, x).

A Πα index for a predicate R(f, n) is a triple 〈Π, a, e〉 such that a
is a notation for α and e is an index for a c.e. set of Σβk indices for
predicates Qk(f, n, x) such that βk < α for all k < ω and

R(f, n)⇔
∧
k<ω

(∀x)Qk(f, n, x).

We say that a predicate is Σα (Πα) if it has a Σα (Πα) index and ∆α

if it is both Σα and Πα.

2. Hirschfeldt and White’s “back-and-forth trees”

The structures in this paper will be directed graphs. We begin by
making use of Hirschfeldt and White’s “back-and-forth trees.” We use
the construction as in [4]; however, instead of fixing a path O′ ⊂ O,
we define structures A2b and E2b for each b ∈ O, and other structures
at limit ordinals. The structures Aa and Ea will be constructed by
effective transfinite recursion with a case division as to whether a = 1,
a = 22b (is the successor of a successor), or a = 23·5e (is the successor of
a limit). Auxiliary structures La∞ and Lak for k < ω will be constructed
for a = 3 ·5e. For a ∈ O, these structures will be isomorphic to subtrees
of ω<ω with height ≤ ω and no infinite paths.
A1 consists of a single node, and E1 consists of a single root node

with infinitely many children, none of which have children themselves.
Now consider a = 22b , i.e., the successor of a successor ordinal. Aa

will consist of a single root node with infinitely many copies of E2b

DEGREES OF CATEGORICITY 5

E2b E2b E2b

Aa

E2b E2b E2b

Ea

A2b A2b A2b

Figure 2. Aa and Ea for a = 22b .

Aϕe(0) Aϕe(1) Aϕe(2)

L3·5e
∞

Aϕe(0) Aϕe(1)

L3·5e
k

Aϕe(k) Eϕe(k+1) Eϕe(k+2)

Figure 3. L3·5e
∞ and L3·5e

k .

attached to it, and Ea will consist of a single root node with infinitely
many copies of A2b and infinitely many copies of E2b attached to it.

Finally, consider an ordinal of the form a = 23·5e . To define Aa and
Ea, we first define auxiliary trees L3·5e

k for each k < ω and an auxiliary
tree L3·5e

∞ . For each k < ω, we let L3·5e
k consist of a single root node

with exactly one copy of Aϕe(n) attached to it for every n ≤ k and
exactly one copy of Eϕe(n) attached to it for every n > k. We define
L3·5e
∞ to consist of a single root node with exactly one copy of Aϕe(n)

attached to it for every n < ω. (Note: This is where we make use of
our assumption that if 3 · 5e ∈ O then each ϕe(n) is a notation for a
successor ordinal.)

Now we can define Aa and Ea. We let Aa consist of a root node with
infinitely many copies of L3·5e

n attached to it for every n < ω and Ea

6 CSIMA, FRANKLIN, AND SHORE

L3·5e
0

Aa

L3·5e
0 L3·5e

1 L3·5e
1

Ea

L3·5e
1L3·5e

1L3·5e
0L3·5e

0L3·5e
∞ L3·5e

∞

Figure 4. Aa and Ea for a = 23·5e .

consist of a root node with infinitely many copies of L3·5e
∞ and infinitely

many copies of L3·5e
n for each n < ω attached to it.

We say that the back-and-forth trees L3·5e
∞ and L3·5e

n for n < ω have
rank 3 · 5e and that the back-and-forth trees Aa and Ea have rank a.

The above definitions are given by computable transfinite recursion.
In fact, we have given a procedure that, for any natural number a,
assumes that a ∈ O with all fundamental sequences containing only
successors and begins to build the desired structure. In any case, a
computable tree is constructed, and if a ∈ O, then it is of the desired
form.

Note that for a 6= a′, we may have, for example, Ea 6∼= Ea′ even
though |a|O = |a′|O. Nonetheless, in cases where it is not likely to lead
to confusion, we will use Eα, Aα, Lαk and Lα∞ to denote copies of Ea,
Aa, Lak and La∞, respectively, for some a ∈ O with |a|O = α.

We will make use of the following results from Hirschfeldt and White
[4]. Note that we have slightly reworded their results. Hirschfeldt and
White fix a particular path through O, noting that their results work
equally well for any path through O, and word their results in terms
of computable ordinals α. For us, it will be more convenient to speak
of the notations, a ∈ O.

Proposition 2.1 (Proposition 3.2, [4]). Let P(n) be a Σα predicate.

(1) If α is a successor ordinal, then for every notation a for α,
there is a sequence of trees Tn, uniformly computable from the
notation a and a Σα index for P, such that for all n,

Tn ∼=
{
Ea if P(n) and

Aa otherwise.

DEGREES OF CATEGORICITY 7

(Note: If α <O ω, then P(n) must be Σα+1.)
(2) If α is a limit ordinal, then for every notation a for α, there is

a sequence of trees Tn, uniformly computable from the notation
a and a Σα index for P, such that for all n,

Tn ∼=
{
La∞ if ¬P(n) and

Lak for some k otherwise.

For the following two lemmas, we need to define a limb of a tree. We
say that a tree S is a limb of another tree T if S ⊆ T and every child
in T of a node of S is in S as well. A back-and-forth limb is a limb that
is isomorphic to one of Hirschfeldt and White’s back-and-forth trees.

Lemma 2.2 (Lemma 3.4, [4]). Let T be any tree. For each a ∈ O, there
is an infinitary formula χa(x) ∈ Lω1,ω such that for any back-and-forth
limb S of T with root r,

T |= χa(r)⇔ rank(S) = a.

Furthermore, “T |= χa(r)” is a Πα condition for a computable structure
T , where α = |a|O, and an index for χa(x) can be found uniformly in
a.

If S is a back-and-forth limb, then by definition it is isomorphic to
Aa, Ea, La∞ or Lak for some a ∈ O. We call the isomorphism type
of S a back-and-forth index of S and note that it can be viewed as a
natural number (namely, the computable index of the back-and-forth
tree it is isomorphic to). Note that a back-and-forth limb may have
more than one rank, and more than one back-and-forth index, as there
might be distinct yet isomorphic back-and-forth trees. However, along
a fixed path of O, the ranks and back-and-forth indices are unique,
and in such cases we may speak of “the rank” and “the back-and-forth
index”.

Definition 2.3. To each back-and-forth tree B, we associate a natural
complexity based on its back-and-forth index as follows. For n < ω, En
has natural complexity Σn+1 and An has natural complexity Πn+1. For
α ≥ ω, Eα has natural complexity Σα, Aα has natural complexity Πα,
Lα∞ has natural complexity Πα, and Lαk has natural complexity Σα.

Lemma 2.4 (Lemma 3.5, [4]). Let T be a tree, and let B be any back-
and-forth tree. Then there is an infinitary formula ϕB(x) ∈ Lω1,ω such
that for any back-and-forth limb S of T which has root r and the same
rank as B,

T |=
{
ϕB(r) if S ∼= B and

¬ϕB(r) otherwise.

8 CSIMA, FRANKLIN, AND SHORE

Furthermore, for computable T , the complexity of “T |= ϕB(r)” is the
natural complexity of B, and an index for ϕB(r) can be found uniformly
from the back-and-forth index of B.

We can use the above lemmas to see to what extent 0(α) can be used
to compute isomorphisms between back-and-forth trees.

Corollary 2.5. Let T be any computable tree, and let S be a back-
and-forth limb of T with rank(S) <O a, and root r. Then H(a) can,
uniformly in r, compute the back-and-forth index of S.

Proof. Recall that {b | b <O a} is c.e. By Lemma 2.2, for each b ∈ O,
T |= χb(r) is a Π|b|O condition, so for b <O a, H(a) can compute
whether T |= χb(r). As T |= χb(r) for some b <O a, H(a) can compute
b =rank(S). Now, for each back-and-forth tree B of rank b, by Lemma
2.4, T |= ϕB(r) has complexity Πb or Σb. In either case, since b <O a,
H(a) can compute whether T |= ϕB(r) and thus compute the back-
and-forth index of S. �

Corollary 2.6. Let S1 be a back-and-forth limb of a computable tree
T1 with root r1, and let S2 be a back-and-forth limb of a computable tree
T2 with root r2. Suppose that S1 ∼= S2 and rank(Si)≤O a. Then H(a)
can, uniformly in r1 and r2, compute an isomorphism f : S1 → S2.
Proof. This follows easily by Corollary 2.5 and recursive transfinite
induction. Indeed, suppose the result holds for all b <O a. Let ci1, c

i
2, ...

denote the children of ri in Si. Note that since H(a) ≥T ∅′, certainly
H(a) can uniformly compute the cij. Since rank(Si) ≤O a, each cij is
the root of a back-and-forth limb of rank <O a. By Corollary 2.5, H(a)
can uniformly compute the back-and-forth index of the limb with root
cij, so H(a) can bijectively match each c1j to some c2k with the same
index (since S1 ∼= S2). Then by the induction hypothesis, H(a) can
extend this bijection to an isomorphism between S1 and S2. �

3. Examples of degrees of categoricity

We begin by demonstrating that certain degrees in the hyperarith-
metic hierarchy are degrees of categoricity.

Theorem 3.1. For any a ∈ O, there is a computable structure Sa with
(strong) degree of categoricity H(a).

Proof. We build the structures Sa for a ∈ O by transfinite recursion.
These structures will consist of infinitely many disjoint copies of the
different kinds of back-and-forth trees described in Section 2, though

DEGREES OF CATEGORICITY 9

they will not be trees themselves. To do this, we will describe the back-
and-forth trees we want to use and then assign elements of ω to the
various parts of these trees by defining a set of edges that will produce
these trees. Note that in fact for any a ∈ ω the procedure can be used
to build a computable structure Sa, where the structure has the desired
form for each a ∈ O.

For each a ∈ O, we will build a “standard” copy of Sa as well as

a “hard” but still computable copy Ŝa such that any isomorphism be-

tween Sa and Ŝa will compute H(a).
First, we consider the case a = 2. Let S2 consist of infinitely many

disjoint copies of A1 and E1, and fix an approximation {Ks}s∈ω to 0′.
We define the set of edges of the standard copy S2 to be

{(〈2n, 0〉, 〈2n, k〉) | k > 0},
so the substructure consisting of the elements in an “even” column is
isomorphic to E1 (with 〈2n, 0〉 as the root node) and the elements in
the “odd” columns are not connected to any other elements and are
thus, when considered as singletons, substructures that are isomorphic

to A1. Now we define the set of edges of the hard copy, Ŝ2, to be

{(〈2n, 0〉, 〈2n, t〉) | n ∈ Kt}.

In Ŝ2, the root nodes of copies of E1 are of the form 〈2n, 0〉 for n ∈ K,
and their child nodes are of the form 〈2n, t〉 for those t where n ∈ Kt.
Elements coding pairs of any other form will not be connected to any
other elements and, when considered as singletons, will be substruc-

tures isomorphic to A1. Let f : Ŝ2 ∼= S2. Then n ∈ K ⇐⇒
f(〈2n, 0〉) = 〈2m, 0〉 for some m.

Now we consider two arbitrary computable copies of S2. Since 0′ can
answer all Σ1 and Π1 questions, it can determine which elements of each
are A1 components, which are roots in E1 components, and which are
children in E1 components, so it is powerful enough to compute an
isomorphism between these copies.

Now we consider the case of 2a where a = 2b for some b ∈ O. In this
case, let S2a consist of infinitely many disjoint copies of Aa and Ea.

We now verify that S2a has degree of categoricity H(2a). In the
following discussion, we assume that |a|O > ω; the case where |a|O is
finite is similar but some indices are off by one.

Since H(2a) is Σ0
|a|O , using Proposition 2.1 (1), we can build a com-

putable copy Ŝ2a of S2a such that for every n, 〈n, 0〉 is a parent node
of a tree isomorphic to Ea if n ∈ H(2a) and a parent node of a tree
isomorphic to Aa if n 6∈ H(2a). We have a standard copy of S2a where

10 CSIMA, FRANKLIN, AND SHORE

〈2n, 0〉 is a parent node of a tree isomorphic to Ea and 〈2n + 1, 0〉 is a

parent node of a tree isomorphic to Aa for every n. Let f : Ŝ2a ∼= S2a .
Then n ∈ H(2a) if and only if f(〈n, 0〉) = 〈2k, 0〉 for some k.

Conversely, let B be an arbitrary computable copy of S2a . We de-
scribe an H(2a)-computable isomorphism f : B → S2a . It is a Σ1

question whether a vertex in B has an edge going to it. Hence, H(2a)
can certainly compute the root nodes, ri, of all the connected com-
ponents of B. Each connected component is isomorphic to either Ea
or Aa, which both have rank a. By Corollary 2.5, H(2a) uniformly
computes the back-and-forth index of the limb extending from each
root node. Thus H(2a) can first define a bijection between the root
nodes ri in B and the root nodes 〈i, 0〉 in S2a that is back-and-forth
index preserving. Then, by Corollary 2.6, H(2a) can extend this to an
isomorphism B ∼= S2a .

Now we consider the case where a = 3 ·5e. Let Sa consist of infinitely
many disjoint copies of Aϕe(k) and Eϕe(k) for all k ∈ ω.

To make the hard copy, Ŝa, we proceed as follows. Using Proposition
2.1 (1), let 〈u, v, n+1, 0〉 be the parent node of a tree that is isomorphic
to Eϕe(n) if u ≤O ϕe(n) and v ∈ H(u) and isomorphic to Aϕe(n) other-
wise. Let 〈u, v, 0, 0〉 be the parent node of a tree that is isomorphic to
Eϕe(0) if (∃n)[u ≤O ϕe(n)] and isomorphic to Aϕe(0) otherwise. To make
the standard copy, we let 〈k, n, 0〉 be the parent node of a tree that is
isomorphic to Eϕe(n) if k is even and Aϕe(n) if k is odd.

Let f : Ŝa ∼= Sa; we wish to use f to compute H(a). First, compute
f(〈u, v, 0, 0〉). If f(〈u, v, 0, 0〉) is not of the form 〈2y, 0, 0〉, then u 6<O a,
so 〈u, v〉 6∈ H(a). Otherwise, we know that u <O a, so we search for
n such that u ≤O ϕe(n). Then we compute f(〈u, v, n + 1, 0〉), which
must have the form 〈k, n, 0〉 for some k. We have 〈u, v〉 ∈ H(a) if and
only if k is even.

Now we let B be an arbitrary computable copy of Sa. We describe
an H(a)-computable isomorphism f : B → Sa. As before, H(a) can
certainly compute the root nodes, ri, of all the connected components
of B. Each connected component is a back-and-forth tree of rank <O a.
By Corollary 2.5, H(a) uniformly computes the back-and-forth index
of the limb extending from each root node. Thus, as before, H(a) can
first define a bijection between the root nodes ri in B and the root
nodes 〈k, n, 0〉 in Sa that is back-and-forth index preserving. Then, by
Corollary 2.6, H(a) can extend this to an isomorphism B ∼= Sa.

Finally, we consider the case of 2a where a = 3 · 5e. Let S2a consist
of infinitely many disjoint copies of La∞ and Lak for all k < ω. To make
the standard copy, we let 〈n, k, 0〉 be the parent node of a tree that is

DEGREES OF CATEGORICITY 11

isomorphic to Lak if n is even and La∞ otherwise. H(2a) is Σ0
|a|O . Using

Proposition 2.1 (2), we can build a computable copy Ŝ2a of S2a such
that for every n, 〈n, 0〉 is a parent node of a tree isomorphic to Lak
for some k if n ∈ H(2a) and a parent node of a tree isomorphic to

La∞ if n 6∈ H(2a). Let f : Ŝ2a ∼= S2a . Then n ∈ H(2a) if and only if
f(〈n, 0〉) = 〈2l, k, 0〉 for some l and k.

The argument that H(2a) suffices to compute an isomorphism be-
tween arbitrary computable presentations of S2a is as in the previous
cases, since all connected components are back-and-forth trees with
rank <O 2a. �

Now we can extend the set of known degrees of categoricity even
further.

Theorem 3.2. Let α be a computable successor ordinal. If d is 2-c.e.
in and above 0(α), then d is a (strong) degree of categoricity.

Proof. We build a graph G with degree of categoricity d. Let D ∈ d be
2-c.e. in and above 0(α), and let B and C be Σ0

α sets such that C ⊂ B
and D = B−C. Let {Bk}k∈ω be an enumeration of B relative to 0(α).
For each n ∈ ω, we will make use of vertices labeled enk , a

n
k , b

n
k , c

n
k , d

n
k

for k ∈ ω, which will all belong to a single connected component of
the graph. We attach an (n + 4)-cycle to the point en0 . We now use

Proposition 2.1 (1) to build two computable copies G and Ĝ of the
graph. Since the description of the component for n is the same for
each n, we drop the superscript to ease notation. In both copies, we
have edges (ek, ek+1), (ek, ak), (ek, bk), (ek, ck), (ek, dk), (ak, bk), (bk, ck),
(ck, dk), and (dk, ak) for all k (Figure 5). In both copies, a0 will be a
parent node of a tree isomorphic to Eα and c0 will be a parent node of
a tree isomorphic to Eα if n ∈ C and Aα otherwise. In G, let b0 be a
parent node of a tree isomorphic to Eα if n ∈ B and Aα otherwise, and
let d0 be a parent node of a tree isomorphic to Eα if n ∈ C and Aα
otherwise (Figure 6). In Ĝ, we reverse the roles of b0 and d0 (Figure 7).

Now for k > 0, in both copies, we will make ak a parent node of a tree
isomorphic to Eα and ck a parent node of a tree isomorphic to Aα. In G,
let bk be a parent node of a tree isomorphic to Eα if n ∈ (Bk+1−Bk)∩C
and Aα otherwise, and let dk be a parent node of a tree isomorphic to

Aα (Figure 8). In Ĝ, we reverse the roles of bk and dk (Figure 9).

Finally, to guarantee that any isomorphism between G and Ĝ will
compute H(α), we proceed as follows. We add a 3-cycle and a copy
of Sα built the “standard” way to G with edges from each node of the

3-cycle to the root node of Sα. We do the same for Ĝ, but we use a copy

12 CSIMA, FRANKLIN, AND SHORE

a0

��

d0oo a1

��

d1oo

b0 // c0

OO

b1 // c1

OO

e0

ffMMMMMMMMMMMM

88qqqqqqqqqqqq

]]::::::::::::::::::

AA������������������
//

||

e1

``AAAAAAAA

>>}}}}}}}}

WW///////////////

GG���������������
// . . .

(n+ 4)-cycle

88

Figure 5. Basic structure of the nth connected compo-

nent of G and Ĝ

Eα Eα if n ∈ C
Aα otherwise

a0

��

hhPPPPPPPPPPPPPPPPPPP
d0oo

66nnnnnnnnnnnnnn

b0 //

vvnnnnnnnnnnnnnn c0

OO

((PPPPPPPPPPPPPP

Eα if n ∈ B
Aα otherwise

Eα if n ∈ C
Aα otherwise

Figure 6. G

Eα Eα if n ∈ B
Aα otherwise

a0

��

hhPPPPPPPPPPPPPPPPPPP
d0oo

66nnnnnnnnnnnnnn

b0 //

vvnnnnnnnnnnnnnn c0

OO

((PPPPPPPPPPPPPP

Eα if n ∈ C
Aα otherwise

Eα if n ∈ C
Aα otherwise

Figure 7. Ĝ

of Ŝα built the “hard” way instead. These 3-cycles must be matched
up by any isomorphism between these structures, which means that

DEGREES OF CATEGORICITY 13

Eα Aα

ak

��

aaCCCCCCCC

dkoo

=={{{{{{{{

bk //

}}{{{{{{{{
ck

OO

!!CCCCCCCC

Eα Aα

Figure 8. G for k > 0 if n ∈ (Bk+1 −Bk) ∩ C

Eα Eα

ak

��

aaCCCCCCCC

dkoo

=={{{{{{{{

bk //

}}{{{{{{{{
ck

OO

!!CCCCCCCC

Aα Aα

Figure 9. Ĝ for k > 0 if n ∈ (Bk+1 −Bk) ∩ C

such an isomorphism must be able to map a “standard” copy of Sα to
a “hard” copy.

Note that in any computable copy of the structure, for each n, the
points isomorphic to e0, e1, e2, . . . are computable, as are the 4-cycles
emanating from them. Each member of such a 4-cycle is a parent node
of a tree isomorphic to either Eα or Aα, and an isomorphism of two
copies of the structure matches these up correctly.

Let p be an isomorphism between G and Ĝ. This means that p
must be able to compute H(α), since it can compute an isomorphism

between the 3-cycles with copies of Sα and Ŝα attached to them.
Now if p(a0) = a0, then either n ∈ C (in which case n 6∈ D), or

n 6∈ B (in which case n 6∈ D as well). Therefore, if p(a0) = a0, then
n 6∈ D. If p(a0) 6= a0, then n ∈ B. This means that n ∈ D if and only
if n 6∈ C. Since p computes H(α) and n ∈ B, p computes the k such
that n ∈ Bk+1 −Bk. Then n ∈ D if and only if p(ak) = ak.

14 CSIMA, FRANKLIN, AND SHORE

Eα Aα

a0

��

aaCCCCCCCC

d0oo

=={{{{{{{{

b0 //

}}{{{{{{{{
c0

OO

!!CCCCCCCC

Aα Aα

Figure 10. G and Ĝ if n 6∈ B

Conversely, we claim that, given arbitrary computable copies of the
structures, D can compute an isomorphism between them. Note that
the limbs of Eα and Aα all have rank α− 1, so by Corollary 2.5, H(α)
can compute the back-and-forth index of limbs of the trees attached
to any of ak, bk, ck, dk in either copy. Moreover, Eα has Aα as a proper
substructure; i.e., the any back-and-forth index of a limb of Aα also
occurs as the back-and-forth index of a limb of Eα, but not conversely.
Thus the fact that a tree attached to some node is Eα (and not Aα) is
c.e. in H(α).

If n 6∈ D, then there are two possibilities: either n is not in B (and
therefore, not in C) or n is in both B and C. In the first case, exactly
one of the nodes a0, b0, c0, and d0 (in fact, a0) is a parent node of a tree
isomorphic to Eα (Figure 10). In the second case, all of these nodes are
parent nodes of a tree isomorphic to Eα (Figure 11). Now, by Corollary
2.5, we can use H(α) to find at least one Eα parent node in each copy
and match these up, applying Corollary 2.5 to match up limbs of the Eα
with the same back-and-forth index, and Corollary 2.6 to (uniformly)
extend these to isomorphisms of the limbs. The rest of the four nodes
can then be safely matched up, using the same procedure to construct
the isomorphism, assuming they are all copies of Aα—if at some point
it turns out that one is an Eα and not an Aα, then they all are. If
n ∈ D, then exactly two of the nodes a0, b0, c0 and d0 are parent nodes
of a tree isomorphic to Eα (Figures 12 and 13); H(α) can find these in
each copy and match them up.

For k > 0, exactly one or two of the nodes ak, bk, ck, dk are parent
nodes of a tree isomorphic to Eα. The only way that there are two is if
n ∈ (Bk+1 − Bk) ∩ C. Now H(α) and hence D can compute whether
n ∈ Bk+1−Bk, and if n ∈ Bk+1−Bk, then n ∈ C if and only if n 6∈ D.
Therefore, D can compute whether there are one or two copies of Eα

DEGREES OF CATEGORICITY 15

Eα Eα

a0

��

``AAAAAAAA

d0oo

>>}}}}}}}

b0 //

~~}}}}}}}}
c0

OO

 AAAAAAAA

Eα Eα

Figure 11. Copy 1 and Copy 2 if n ∈ C

Eα Aα

a0

��

aaCCCCCCCC

d0oo

=={{{{{{{{

b0 //

}}{{{{{{{{
c0

OO

!!CCCCCCCC

Eα Aα

Figure 12. Copy 1 if n ∈ B and n 6∈ C

Eα Eα

a0

��

aaCCCCCCCC

d0oo

=={{{{{{{{

b0 //

}}{{{{{{{{
c0

OO

!!CCCCCCCC

Aα Aα

Figure 13. Copy 2 if n ∈ B and n 6∈ C

with parent nodes among ak, bk, ck, dk, and H(α) can find these in each
copy and match them up.

16 CSIMA, FRANKLIN, AND SHORE

We conclude by observing that since D ≥T H(α), D can compute an
isomorphism between the copies of Sα attached to the 3-cycle in each
copy.

�

4. General properties of degrees of categoricity

Fokina, Kalimullin, and R. Miller showed that any strong degree of
categoricity is hyperarithmetical. The Effective Perfect Set Theorem is
the main ingredient in their proof [2]. Here, we strengthen their result
and show that every degree of categoricity is hyperarithmetic. We then
go on to show that the index set of structures that have a degree of
categoricity is actually Π1

1 complete.

Theorem 4.1. If d is a degree of categoricity, then d ∈ HY P .

Proof. Let d 6∈ HY P , and let A be any computable structure. We will
show that d is not a degree of categoricity for A. Let A0, A1, A2,... be
a list of all computable copies of A. Note that {f | f : A0

∼= A1} is Π0
2,

so it is certainly Σ1
1. Hence by Kreisel’s Basis Theorem [7], there exists

an isomorphism f1 : A0
∼= A1 such that d 6≤h f1. Suppose we are given

isomorphisms fi : A0
∼= Ai for 1 ≤ i ≤ n such that d 6≤h f1 ⊕ · · · ⊕ fn.

Then by Kreisel’s Basis Theorem relativized to f1⊕· · ·⊕fn, there exists
an isomorphism fn+1 : A0

∼= An+1 such that d 6≤h f1⊕· · ·⊕ fn+1. Now
let a,b be an exact pair for the sequence f1, f1⊕f2, f1⊕f2⊕f3, Since
fn is an isomorphism between A0 and An, both a and b can compute
an isomorphism between any two arbitrary computable copies of A.
Therefore, if d is a degree of categoricity for A, then d ≤ a and d ≤ b.
However, since a,b is an exact pair, d ≤T f1 ⊕ · · · ⊕ fn for some n,
giving us a contradiction. �

Now we consider the complexity of the index set of structures that
have a degree of categoricity. Let A0,A1,A2, . . . be a list of the partial
computable structures.

Theorem 4.2. The index set DC = {e | Ae has a degree of categoricity}
is Π1

1 complete.

Proof. We begin by giving the natural formula ψ(e) that expresses that
the structure Ae has a degree of categoricity, that is, the formula

(∃D){(∀i)[(∃F)(F : Ae ∼= Ai) → (∃F̂ ≤T D)(F̂ : Ae ∼= Ai)] &

(∀C)[(∀i)[(∃F)(F : Ae ∼= Ai) → (∃F̂ ≤T C)(F̂ : Ae ∼= Ai)]→ D ≤T C]}.

DEGREES OF CATEGORICITY 17

We note that ψ(e) is Σ1
2. However, by Theorem 4.1, we know that any

degree of categoricity is hyperarithmetic. Thus many of the existential
quantifiers in ψ can be bounded by HYP without changing the meaning
of the formula. That is, we have the following formula ψ̂(e) expressing
that Ae has a degree of categoricity.

(∃D ∈ HY P){(∀i)[(∃F)(F : Ae ∼= Ai) → (∃F̂ ≤T D)(F̂ : Ae ∼= Ai)] &

(∀C)[(∀i)[(∃F ∈ HY P)(F : Ae ∼= Ai) → (∃F̂ ≤T C)(F̂ : Ae ∼= Ai)]→ D ≤T C]}
We observe that this formula is Π1

1: quantifiers like ∃D ∈ HY P can be

written as Π1
1 formulas, and quantifiers like ∃F̂ ≤T D are arithmetic.

Furthermore, we note that we can write ∃F ∈ HY P in the second half
of the conjunction instead of simply ∃F because we require D to be in
HYP and because the first half of the conjunction states that there is
an isomorphism from Ae to Ai that is computable from D. Therefore,
ψ̂(e) is equivalent to ψ(e). Now we only need to show that the set DC
is Π1

1 complete.
For each a ∈ ω, we will, uniformly in a, define a computable structure
Ra. If a ∈ O, then Ra will have a degree of categoricity. If a 6∈ O then
Ra will have distinguishable computable substructures with degrees of
categoricity H(b) for b’s in O of rank unbounded in ωCK1 . Thus Ra

itself not have a degree of categoricity by Theorem 4.1.
We begin with a folklore reduction that can be found in [9], Prop.

5.4.1: There is a recursive function f such that if a ∈ O then f(a) is an
index for a recursive linear ordering of type α < ωCK1 and if a /∈ O then
f(a) is an index for a recursive linear ordering of type ωCK1 (1 + η) (the
Harrison linear ordering). We then apply a standard translation g of a
recursive linear order into a recursive notation system ≤g(e) as can be
found in [6] (Theorem 11.8.XX). This translation takes an index e for
a recursive well ordering to a recursive notation system in O of limit
ordinal length (actually ω times the length of the original ordering)
and one for a linear order of type ωCK1 (1 + η) to a recursive notation
system (although not a well founded one) with a well founded initial
segment that is a path in O of type ωCK1 .

Let Ra be a disjoint labeled union of the Sb for each b in the notation
system g(f(a)), i.e. there is a (b+ 3)-cycle with a copy of Sb attached
to a node in the cycle. Note that since the notation system is recursive
and each Sb is uniformly computable (in b), Ra is computable. Note
that we can build “standard” and “hard” copies of Ra by using (for
any b ∈ O) the standard copies of Sb in the standard copy of Ra

and the hard copies Ŝb in the hard copy R̂a of Ra. Since for each

18 CSIMA, FRANKLIN, AND SHORE

b in the system, the copy of Sb in Ra is labeled by a (b + 3)-cycle,
it is easy to see that for any b ∈ O in the system, any isomorphism

f : R̂a → Ra computes H(b). If a ∈ O, then the notation system is
an initial segment of O of length some limit notation c ∈ O. By the
uniformities of all our constructions, it is easy to see that H(c) can
always compute an isomorphism between any two copies of Ra. On
the other hand, the uniform replacement of the Sb by hard and easy
ones produces copies such that any isomorphism uniformly computes
H(b) for every b <O c, and so computes H(c). Hence if a ∈ O, Ra

has degree of categoricity H(c). On the other hand, if a 6∈ O then the
system includes initial segments of a path in O of length ωCK1 . Thus
Ra includes distinguishable copies of Sb for b of rank unbounded in
ωCK1 . Again we can build “easy” and “hard” copies of Ra by using
“easy” and “hard” copies of the Sb as appropriate. We then see that
any degree of categoricity of Ra must compute H(b) for each b in
the system g(f(a)). As these are of unbounded rank, it follows that
the degree of categoricity cannot be hyperarithmetical, contradicting
Theorem 4.1.

�

5. Further questions

Although we have answered some questions arising from Fokina,
Kalimullin, and Miller’s work, several questions still remain.

Question 5.1. Is every degree that is n-c.e. in and above a degree of
the form 0(α) for a computable ordinal α and some n < ω a (strong)
degree of categoricity?

Fokina, Kalimullin and Miller answered the above, in the affirmative
and for strong degrees, for all α ≤ ω and n ≤ 2. In this paper, we have
extended the result for n ≤ 2 and all computable successor ordinals α.
For n = 2 the question is open for limit ordinals, and for n > 2 it is
open for any computable α.

So far, every known degree of categoricity is 2-c.e. in and above some
degree of the form 0(α) for α < ωCK1 .

Question 5.2. Is there a degree of categoricity that is not n-c.e. in and
above a degree of the form 0(α) for a computable ordinal α and some
n < ω?

Finally, the question of whether the degrees of categoricity are pre-
cisely the strong degrees of categoricity are the same is still open.

Question 5.3. Is every degree of categoricity a strong degree of cate-
goricity?

DEGREES OF CATEGORICITY 19

Theorem 4.1 tells us that we can limit our search for a counterexam-
ple to the hyperarithmetic case and provides some evidence that these
degrees are the same, but no more.

Along similar lines, but with a view towards the structures, one
might ask the following.

Question 5.4. Does there exist a structure which has a degree of cat-
egoricity that is not a strong degree of categoricity for that structure?

References

[1] C.J. Ash and J. Knight. Computable Structures and the Hyperarithmetical Hi-
erarchy. Number 144 in Studies in Logic and the Foundations of Mathematics.
North-Holland, 2000.

[2] Ekaterina B. Fokina, Iskander Kalimullin, and Russell Miller. Degrees of cate-
goricity of computable structures. Arch. Math. Logic, 49(1):51–67, 2010.

[3] Valentina S. Harizanov. Pure computable model theory. In Handbook of recur-
sive mathematics, Vol. 1, volume 138 of Stud. Logic Found. Math., pages 3–114.
North-Holland, Amsterdam, 1998.

[4] Denis R. Hirschfeldt and Walker M. White. Realizing levels of the hyperarith-
metic hierarchy as degree spectra of relations on computable structures. Notre
Dame J. Formal Logic, 43(1):51–64 (2003), 2002.

[5] David Marker. Non Σn axiomatizable almost strongly minimal theories. J. Sym-
bolic Logic, 54(3):921–927, 1989.

[6] Hartley Rogers, Jr. Theory of recursive functions and effective computability.
McGraw-Hill Book Co., New York, 1967.

[7] Gerald E. Sacks. Higher Recursion Theory. Springer-Verlag, 1990.
[8] Robert I. Soare. Recursively Enumerable Sets and Degrees. Perspectives in

Mathematical Logic. Springer-Verlag, 1987.
[9] Walker McMillan White. Characterizations for computable structures. PhD the-

sis, Cornell University, 2000.

Department of Pure Mathematics, University of Waterloo, 200 Uni-
versity Avenue West, Waterloo, Ontario, Canada N2L 3G1

E-mail address: csima@math.uwaterloo.ca

Department of Mathematics, 196 Auditorium Road, University of
Connecticut, U-3009, Storrs, CT 06269-3009, USA

E-mail address: johanna.franklin@uconn.edu

310 Malott Hall, Cornell University, Ithaca, NY 14853-4201, USA
E-mail address: shore@math.cornell.edu

