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Abstract. The notion of superhigh computably enumerable (c.e.) degrees

was first introduced by Mohrherr in [7], where she proved the existence of
incomplete superhigh c.e. degrees, and high, but not superhigh, c.e. degrees.

Recent research shows that the notion of superhighness is closely related to

algorithmic randomness and effective measure theory. Jockusch and Mohrherr
proved in [4] that the diamond lattice can be embedded into the c.e. tt-degrees

preserving 0 and 1 and that the two atoms can be low. In this paper, we prove

that the two atoms in such embeddings can also be superhigh.

1. Introduction

In 1966, Lachlan proved that no diamond preserving both 0 and 1 can be embed-
ded in the c.e. Turing degrees [5]. However, Cooper showed that such a diamond
can be embedded into the ∆0

2 degrees if we do not require that the atoms be c.e.
[1]. Later, Epstein showed that both atoms can be made to be low or that both
atoms can be made to be high [3], and Downey proved in [2] that both atoms can
be d.c.e. degrees, giving an extremely sharp result in terms of the Ershov hierarchy.

Alternately, we can consider the possibility of constructing a diamond preserving
0 and 1 if we consider a stronger reducibility. Since the proof of Lachlan’s Non-
Diamond Theorem holds in the c.e. wtt-degrees as well, no such diamond exists
in the c.e. wtt-degrees. However, Jockusch and Mohrherr showed in [4] that the
diamond lattice can be embedded into the c.e. tt-degrees preserving 0 and 1 and,
furthermore, that the two atoms can be low. In this paper, we present a proof that
such a diamond can be embedded into the c.e. tt-degrees in such a way that both
atoms are superhigh.

The notion of superhigh c.e. degrees was first introduced by Mohrherr in [7],
where a computably enumerable set A is defined to be superhigh if A′ ≡tt ∅′′. In
the same paper, Mohrherr proved the existence of incomplete superhigh c.e. degrees
and also the existence of high, but not superhigh, c.e. degrees. More recently, Ng [8]
has shown that there is a minimal pair of superhigh c.e. degrees. Recent research
in computability theory shows that the notion of superhighness is closely related
to algorithmic randomness and effective measure theory. For instance, Simpson
showed that uniformly almost everywhere dominating degrees are all superhigh [9].
In fact, it follows that all uniformly almost everywhere dominating degrees are high
from Martin’s characterization of high sets [6].

Our theorem is stated as follows.
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Theorem 1.1. There are superhigh computably enumerable sets A and B such
that 0, degtt(A), degtt(B), and 0′tt form a diamond in the computably enumerable
tt-degrees.

Our construction differs from Jockusch and Mohrherr’s in several important
ways. Jockusch and Mohrherr’s construction involves only a finite injury argument,
while ours involves an infinite injury argument. This is necessary to make A and B
superhigh. Due to this, our sets A and B will not have some of the nice properties
that are possessed by the sets constructed by Jockusch and Mohrherr. For instance,
they were able to build their atoms A and B with A ∪ B = K, guaranteeing
that K ≡tt A ∪ B in a very obvious way. In our construction, the superhighness
strategies will force us to enumerate elements into A and B from time to time
to maintain our computations that witness A′ ≥tt TOT and B′ ≥tt TOT . To
ensure that K ≤tt A ⊕ B, we dedicate the numbers of the form 〈x, 0〉 to meeting
this requirement. This allows us to replace Jockusch and Mohrherr’s conclusion
that x ∈ K if and only if x ∈ A ∪ B by the slightly more complicated conclusion
that x ∈ K if and only if 〈x, 0〉 ∈ A ∪ B. Again, for the consistency between the
superhighness strategies and the minimal pair strategies, we need to be extremely
careful when we switch from one outcome to another one.

Our notation and terminology are standard and generally follow Soare [10]. Let
ϕe and ΦA

e be the e-th partial computable function and the e-th A-partial com-
putable function, respectively. In particular, if ϕe(x) ↓, then [e](x) denotes the
truth table with index ϕe(x) in some effective enumeration of all truth tables, de-
noted as τϕe(x), and |[e](x)| denotes the length of this truth table. For any set A,
[e]A(x) is 0 or 1 depending on whether or not A satisfies the truth table condition
with index ϕe(x) (denoted by A |= [e](x) if [e]A(x) = 1 and A 6|= [e](x) otherwise).
Given two sets A and B, we say that A ≤tt B iff there is an e with ϕe total such
that for all x, [e]B(x) = A(x). When we choose a fresh number as a γ-use or a δ-use
at stage s, this number is the least number bigger than the corresponding restraint
that is not of the form 〈x, 0〉.

2. Requirements and basic strategies

To prove Theorem 1.1, we will construct two c.e. sets A and B such that both
of them are superhigh, K is truth-table reducible to A ⊕ B, and the tt-degrees of
A and B form a minimal pair in the tt-degrees. A and B will satisfy the following
requirements:

P: K ≤tt A⊕B;
SA: TOT ≤tt A′;
SB : TOT ≤tt B′;
Ni,j : [i]A = [j]B = g total ⇒ g is computable;

Recall that TOT = {e : ϕe is total} is a Π0
2-complete set. Therefore, if SA and SB

are satisfied, then A and B will both be superhigh.

2.1. The P-Strategy. To satisfy the requirement P, we simply code K into A⊕B.
We will use a computable enumeration of K such that at each odd stage s, exactly
one number, ks, enters K. At each odd stage s, we will enumerate 〈ks, 0〉 into
A, B, or both. We will decide which of these sets to enumerate 〈ks, 0〉 into based
on the actions of the minimal pair strategies Ni,j . If k 6∈ K, then 〈k, 0〉 will
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never be enumerated into A or B. It is obvious that we will have the equality
K = {k : 〈k, 0〉 ∈ A ∪B}, and hence K ≤tt A⊕B.

The P-requirement is global, so we do not put its outcome on the construction
tree.

2.2. An Ni,j-Strategy. Recall that if [i] is a tt-reduction, then for any oracle
X ⊆ ω and any input x, [i]X(x) converges. The computation [i]X(x) can be injured
at most finitely many times due to the enumeration of numbers less than or equal
to |τϕi(x)| into X in our construction.

For the requirement Ni,j , we apply the diagonalization argument introduced by
Jockusch and Mohrherr in [4]. That is, once we see a disagreement between [i]A

and [j]B , we will preserve it forever to make [i]A 6= [j]B . On the other hand, if [i]A

and [j]B are equal and total, then we will ensure that they are computable.
Given values for As and Bs at stage s, we will define As+1 and Bs+1 at stage s+1

by enumerating more elements into them. Furthermore, if we know that [i]A and
[j]B differ at k at stage s, we will describe a way of preserving this disagreement at
stage s+1 even though the enumeration of numbers into A, B, or both might change
the computations involved. Let n be a number we want to put into As+1 ∪ Bs+1.
There are two cases.

(1) Our number n is of the form 〈x, 0〉 for some x. Then n is enumerated into
A, B, or both for the sake of the requirement P. There are three subcases.

Subcase 1:: If [i]As(k) = [i]As∪{n}(k), then n is enumerated into A but not
into B. Both values are preserved, and the disagreement is preserved as
well.

Subcase 2:: If Subcase 1 does not apply but [j]Bs(k) = [j]Bs∪{n}(k), then
n is enumerated into B but not into A. As in Case 1, the disagreement is
preserved.

Subcase 3:: If [i]As(k) 6= [i]As∪{n}(k) and [j]Bs(k) 6= [j]Bs∪{n}(k), then n
is enumerated into both A and B. In this case, the disagreement is again
preserved, as both values are changed.

Note that once one subcase above applies, then we initialize all the strategies
with lower priority to avoid the conflict among the N -strategies — obviously, such
initializations can happen at most finitely often. We need to be careful here when
more N -strategies are considered. It can happen that if we decide to enumerate into
A, B, or both, we also need to consider those N -strategies with higher priority, say
Ni′,j′ , as we need to avoid the following situation: according to the Ni,j-strategy,
at stage s1, a number n1 is enumerated into A, and at stage s2, a number n2 is
enumerated into B (corresponding to Subcases 1 and 2, respectively), and such
enumerations change [i′]A(m) and [j′]B(m), though separately, and at the next
Ni′,j′ -expansionary stage, we may have [i′]A(m) = [j′]B(m), which is different from
its original value — Ni′,j′ is injured.

With this in mind, when we see that the P-strategy wants to enumerate a number
into A, B, or both and that an Ni,j-strategy is attempting to preserve a disagree-
ment that already exists, instead of automatically implementing the enumeration,
we first check whether such an enumeration into A can lead to a disagreement be-
tween [i′]A and [j′]B . If not, then we just work as described above (in Subcase 3,
we now enumerate n into B and check whether this enumeration into B can lead to
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a disagreement for Ni′,j′ — here n is enumerated into A and B separately). Other-
wise, we start to preserve this disagreement to satisfy Ni′,j′ — the Ni,j considered
above is initialized, and again, even if Subcase 3 applies, we do not enumerate n
into B.

(2) Our number n is a number chosen by an SA
e -strategy or an SB

e -strategy.
Without loss of generality, suppose that n is selected by an SA

e -strategy and we
want to put it into A. As in the standard construction of high sets, we will consider
“believable” computations to allow us to handle the potential infinitary injury to the
negative strategies caused by the higher priority highness strategies; for instance,
[i]A(m). In this way, when we see [i]A and [j]B , if this SA

e -strategy has higher
priority thanNi,j , then the enumeration of n into A does not affect the computation
[i]A(m). This will be described further in the discussion of the SA

e -strategies below.
The notion of a believable computation will be defined formally in Definition 2.1.

An Ni,j-strategy has three outcomes: ∞, f and d, where ∞ denotes that there
are infinitely many expansionary stages, f denotes that there are only finitely many
expansionary stages, but no disagreement is produced, and d denotes that a dis-
agreement between [i]A and [j]B is produced and preserved successfully.

2.3. An SA
e -Strategy. To make A superhigh, instead of giving a truth-table re-

duction from TOT to A′ explicitly, we will construct a binary functional ΓA(e, x)
such that for all e ∈ ω,

TOT(e) = lim
x→∞

ΓA(e, x)

with |{x : ΓA(e, x) 6= ΓA(e, x + 1)}| bounded by a computable function h, which
will ensure that TOT ≤tt A′. The relativized Limit Lemma will guarantee that A
will be superhigh. (In the case of B, we will construct a binary functional ∆B(e, y)
satisfying a similar requirement.) The crucial point is to find this computable
bounding function h.

As usual, SA is divided into infinitely many substrategies SA
e , e ∈ ω, each

of which has two outcomes, ∞ (a Π0
2-outcome) and f (a Σ0

2-outcome), where ∞
denotes the guess that ϕe is total and f denotes the guess that ϕe is not total.

Let β be an SA
e -strategy on the priority tree. As usual, we have the following

standard definition of length agreement function:

l(β, s) = max{ x < s : s is a β-stage and ϕe(y)[s] ↓ for all y < x};
m(β, s) = max{ l(β, t) : t < s is an β-stage};

where t is a β-stage if β is visited at stage t. Say that s is a β-expansionary stage
if s = 0 or l(β, s) > m(β, s).

Let s be a β-stage. If s is a β-expansionary stage, then we believe that ϕe is total,
and we undefine every ΓA(e, x) defined by lower priority strategies by enumerating
the corresponding γ(e, x) into A and then define ΓA(e, y) to be 1 for the least y
such that ΓA(e, y) is undefined. If s is not a β-expansionary stage, then we believe
that ϕe is not total, and again, we undefine those ΓA(e, x) defined by lower priority
strategies by enumerating the corresponding γ(e, x) into A and then define ΓA(e, y)
to be 0 for the least y with ΓA(e, y) not defined. Thus, if there are infinitely many
β-expansionary stages (so ϕe is total, e ∈ TOT, and ∞ is the true outcome of β),
then ΓA(e, x) is defined as 1 for almost all x ∈ ω. On the other hand, if there are
only finitely many β-expansionary stages (so ϕe is not total, e 6∈ TOT, and f is the
true outcome of β), then ΓA(e, x) is defined as 0 for almost all x ∈ ω.
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Thus, for a fixed SA
e -strategy β on the construction tree, β will attempt to

redefine ΓA(e, x) for almost all x, with the exception that (a) some γ-uses are
prevented from being enumerated into A by higher priority strategies (when a
disagreement is produced), or (b) ΓA(e, x) is defined by another SA

e -strategy with
higher priority. In particular, if β is the SA

e -strategy on the true path, then there
are only finitely many strategies with higher priority that can be visited during the
whole construction, and hence β will succeed in defining ΓA(e, x) for almost all x.

Suppose that β is on the true path and n is the length of β. We will see that
|{x : ΓA(e, x) 6= ΓA(e, x+1)}| ≤ 23n+1

. To see this, note that (a) above can happen
at most 23n

times, as there are at most 3n many strategies with length less than
n, and each time when one of them produces (not preserves) a disagreement, a
restraint is set, preventing α from rectifying ΓA(e, x) for some x. Note that after
an N -strategy α produces a disagreement, say at stage s, whenever α requires us to
preserve this disagreement, all the strategies with lower priority will be initialized,
and at the same time, all of the γ-uses and δ-uses defined after stage s will be
enumerated into A and B respectively (one by one, as pointed out above, for the
sake of the N -strategies with priority higher than α). It is crucial for us to ensure
that TOT is truth-table reducible to A′ and B′, as we will discuss below. Here, when
β is initialized by a strategy with higher priority with length ≥ n, an SA

e -strategy
β′ on the left of β is visited, and β′ takes the responsibility of rectifying ΓA(e, x) for
some x, which can lead to an inequality between ΓA(e, x) and ΓA(e, x + 1). Thus,
(b) can happen at most 3n many times. In total, the number of those x such that
β cannot rectify ΓA(e, x) is at most 23n+1

, which ensures that Tot ≤tt A′, where
the corresponding bounding function h is given by h(e) = 23e+1

.
We have seen some interactions between the P-strategy and the N -strategies.

Now we describe the interactions between the N -strategies, the S-strategies, and
the P-strategy.

Assume that α is an Ni,j-strategy, β is an SA
e -strategy, and ζ is an SB

e′ -strategy
with β_∞ ⊆ ζ_∞ ⊆ α. The following may happen: at a stage s, a disagreement
between [i]A and [j]B appears at α, so α wants to preserve this disagreement by
initializing all of strategies with lower priority. However, this disagreement can
be destroyed by β and ζ, as they may enumerate small γ-uses and δ-uses into A
and B separately. To avoid this, we require only that α recognizes α-believable
computations, defined formally below.

Definition 2.1. Let α be an Ni,j-strategy, and β be an SA
e -strategy with β_∞ ⊆

α.
(1) A computation [i]As(m) is α-believable at β at stage s if for each x with

γ(e, x)[s] defined by β and less than the length of the truth-table of [i](m),
ΓAs(e, x)[s] is equal to 1.

(2) A computation [i]As(m) is α-believable at stage s if it is α-believable at β
at stage s for any SA

e -strategy β, e ∈ ω, with β_∞ ⊆ α.
We can define an α-believable computation [j]Bs(m) similarly.

We are ready to define an α-expansionary stage for an Ni,j-strategy α.

Definition 2.2. Let α be an Ni,j-strategy. The length of agreement between [i]A

and [j]B is defined as follows:
l(α, s) = max{x < s : for all y < x, [i]A(y)[s] = [j]B(y)[s]
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via α-believable computations}.
m(α, s) = max{l(α, t) : t < s is an α-stage}.

Say that a stage s is α-expansionary if s = 0 or l(α, s) > m(α, s).

Now we consider the situation when β, an SA
e -strategy, changes its outcome from

f to ∞ at a β-expansionary stage. Let s′ be the last β-expansionary stage. Unlike
the construction of high degrees, to make A and B superhigh, we need to enumerate
all the γ-uses and δ-uses defined by strategies below outcome f between stages s′

and s into A and B. This enumeration also takes place when the outcome of an
Ni,j node moves from f to ∞. Again, these numbers cannot be enumerated into
A and B simultaneously, as discussed above in the section on N -strategies, for the
sake of N -strategies with priority higher than β. Let FA

β and FB
β be the collections

of these γ-uses and δ-uses respectively. We put the numbers in FA
β ∪ FB

β into A
or B correspondingly, one by one, from the least to the greatest, and whenever
one number is enumerated, we reconsider the N -strategies with higher priority
to see whether a disagreement appears. Once such a disagreement appears at
an N -strategy, say α, we stop the enumeration as we need to satisfy α via this
disagreement. In this case, β is injured. Note that β can be injured in this way
only by those N -strategies α such that α ⊂ β. We will refer to this enumeration
process as an “outcome-shifting enumeration process” for simplicity.

2.4. Construction. First, we define the priority tree T and assign requirements
to the nodes on T as follows. Suppose σ ∈ T . If |σ| = 3e, then σ is assigned to
the Ni,j-strategy such that e = 〈i, j〉. It has three possible outcomes: ∞, f , and
d, with ∞ <L f <L d. If |σ| = 3e + 1, then σ is assigned to the SA

e -strategy. If
|σ| = 3e + 2, then σ is assigned to the SB

e -strategy. In the latter two cases, σ has
two possible outcomes: ∞ and f , with ∞ <L f .
P is a global requirement, and we do not put it on the tree.
We assume that K is enumerated at odd stages. That is, we fix an enumeration

{k2s+1}s∈ω of K such that at each odd stage 2s + 1, exactly one number, k2s+1, is
enumerated into K.

In the construction, we say that an Ni,j-strategy α sees a disagreement at k at a
stage s if k ≤ s, [i]As and [j]Bs agree on all arguments ≤ k, and one of the following
cases applies:

(i) s is odd (ks enters K and we need to put 〈ks, 0〉 into A ∪B). In this case,
either
(1) [i]As(k) 6= [i]As∪{〈ks,0〉}(k),
(2) [j]Bs(k) 6= [j]Bs∪{〈ks,0〉}(k), or
(3) a disagreement is produced by the enumeration of the γ- or δ-uses

into A or B by the initialization. For instance, there may be an N -
strategy α′ ⊃ α that attempts to preserve a disagreement, and the
enumeration of 〈ks, 0〉 into A, B, or both (depending on α′) and a
one-by-one enumeration of elements of FA ∪ FB into A and B (in
increasing order, as described in the S-strategies) would lead to either
[i]A(k) 6= [i]As(k) or [j]B(k) 6= [j]Bs(k). Here, FA and FB are the finite
collections of γ-uses and δ-uses defined below outcome α′_d after the
last stage α′ that produces or preserves its disagreement.

If (1) is true, then we enumerate 〈ks, 0〉 into A. If (1) is not true but
(2) is, then we enumerate 〈ks, 0〉 into B. Otherwise, (3) is true, and we
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enumerate 〈ks, 0〉 into A or B or both, according to α′. We also enumerate
the corresponding numbers in FA ∪ FB into A and B respectively.

As a consequence, a disagreement between [i]A(k) and [j]B(k) is pro-
duced, and α will preserve this disagreement forever unless it is initialized
later.

(ii) s is even (s is a β-expansionary stage for some S-strategy β).
Let β be such a strategy, and let s′ be the last β-expansionary stage. At

stage s, to change its outcome from f to ∞, we need to enumerate all of
the elements in FA and FB into A and B respectively. Here, FA and FB are
the finite collections of γ-uses and δ-uses defined below outcome β_f after
stage s′. Again, we enumerate these numbers into A and B in increasing
order until we find that either [i]A(k) 6= [i]As(k) or [j]B(k) 6= [j]Bs(k) is
true; that is, until a disagreement between [i]A(k) and [j]B(k) is produced.
From now on, α will preserve this disagreement forever unless it is initialized
later.

We recall that an Ni,j-strategy α preserves a disagreement at k at an odd stage s
if this disagreement was produced before and has been preserved so far (so [i]As(k) 6=
[j]Bs(k)) and 〈ks, 0〉 is less than one of the lengths of the truth-tables [i](k) and
[j](k). Enumerating 〈ks, 0〉 into A ∪B causes one of the following to happen:

1. If [i]As(k) = [i]As∪{〈ks,0〉}(k), then 〈ks, 0〉 is enumerated into A but not into
B. Both values are preserved, and the disagreement is preserved as well.

2. If [j]Bs(k) = [j]Bs∪{〈ks,0〉}(k), then 〈ks, 0〉 is enumerated into B but not
into A. As in Case 1, the disagreement is preserved.

3. If [i]As(k) 6= [i]As∪{〈ks,0〉}(k) and [i]Bs(k) 6= [i]Bs∪{〈ks,0〉}(k), then 〈ks, 0〉
is enumerated into both A and B. In this case, the disagreement is again
preserved, as both values are changed.

Note that whenever α produces or preserves a disagreement in this manner, all the
strategies below the outcome α_d are initialized. Such initializations can happen
at most finitely often.

Formal Description of the Construction.

Stage 0: Initialize all the nodes on T and set A0 = B0 = ∅. Let ΓA(e, x)[0] and
∆B(e, x)[0] be undefined for each e and x.

Stage s > 0:

Case 1: s is odd. We will put 〈ks, 0〉 into A ∪B at this stage.

First check whether there is an N -strategy that sees a disagreement or needs to
preserve a disagreement. Let α be the highest priority such N -strategy. Enumerate
〈ks, 0〉 into A or B or both accordingly. Initialize all the strategies with lower prior-
ity and do the corresponding enumerations as in (i). Otherwise, we just enumerate
〈ks, 0〉 into A and go to the next stage.

Case 2: s is even. We define the approximation to the true path σs of length ≤ s.
Suppose that σs ¹ u has been defined for u < t and let ξ be σs ¹ t. We will define
σs(t). We have the following two subcases.

Subcase 1: ξ is an Ni,j-strategy for some i and j. If ξ has produced a
disagreement before and ξ has not been initialized since then, we let σs(t) =
d. Otherwise, we check whether s is a ξ-expansionary stage. If not, then
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let σs(t) = f . If it is, then we start the outcome-shifting enumeration
process to enumerate those γ-uses from FA and δ-uses from FB defined
below the outcome ξ_f from the last ξ-expansionary stage into A and
B respectively, one by one and in increasing order. At the same time,
each time we enumerate such a number, we check whether there is an N -
strategy α ⊂ ξ that can produce a disagreement. If there is, then we stop
the enumeration of FA and FB into A and B and let σs = α. Declare that
α produces a disagreement at stage s, let σs = α, and go to the ‘defining’
phase. If not, then after all numbers in FA ∪FB have been enumerated, we
let σs(t) = ∞ and go to the next substage.

Subcase 2: ξ is an SA
e -strategy or an SB

e -strategy for some e. If s is not a
ξ-expansionary stage, let σs(t) = f and go to the next substage. Otherwise,
we start the outcome-shifting enumeration process as described in Subcase
1.

Defining Phase of stage s: For those SA
e -strategies β with β_∞ ⊆ σs, find the

least y such that ΓA(e, y) is currently not defined, define it as 1 and let the use
γ(e, y) be a fresh number, and for those SA

e -strategies β with β_f , find the least
y such that ΓA(e, y) is currently not defined, define it as 0, and let the use γ(e, y)
be a fresh number. For those SB

e -strategies β, we define ∆B(e, y) in the same way.
Initialize all the strategies with lower priority than σs and go to the next stage.

Note that the enumeration of those γ-uses and δ-uses at substages into A and B
ensures that those ΓA(e, x) and ∆B(e, y) defined by those strategies with priority
lower than σs are undefined.

This completes the construction.

2.5. Verification. Let TP = lim infs σ2s be the true path of the construction. We
first prove that TP is infinite and then verify that the construction given above
satisfies all the requirements. First, by the actions at the odd stages, we have that

k ∈ K ⇐⇒ 〈k, 0〉 ∈ A ∪B,

and hence

Lemma 2.3. K ≤tt A⊕B.

The following lemma says that TP is infinite.

Lemma 2.4. Let ς be any node on TP . Then
(1) ς can only be initialized finitely often.
(2) ς can initialize strategies with lower priority at most finitely often.
(3) ς has an outcome O such that ς_O is on TP .

Proof. We prove this lemma by induction. Let ς− be the immediate predecessor of
ς. By the induction hypothesis, there is a least stage s0 after which ς− can never
be initialized again. Also assume that ς = ς−

_O′. There are two cases.

Case 1: ς− = α is an Ni,j-strategy for some i, j ∈ ω.

If O′ is d, then after stage s0, α produces a disagreement, and this disagreement
can never be destroyed as all the strategies with lower priority are initialized when
this disagreement is produced. Therefore, after this, α initializes ς only when it
preserves this disagreement, which can happen at most finitely often. This means
that after a stage large enough that A and B have been fixed on the numbers
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involved in the truth-tables involved, whenever ς− is visited at a stage s, ς is also
visited at this stage, and (1) is true for ς.

If O′ is f , then after stage s0, there are at most finitely many α-expansionary
stages. Let s ≥ s0 be the last α-expansionary stage. Then, after stage s, whenever
ς− is visited at a stage s, ς is also visited at this stage, and hence α_∞ will not be
visited again and ς cannot be initialized by α_∞. If this happens, (1) is true. Note
that in this case, after stage s0, α cannot produce any disagreements as otherwise
it would be preserved forever and α would have outcome d.

If O′ is ∞, then by the choice of stage s0, α cannot produce any disagreement
after stage s0, and ς cannot be initialized. Again, (1) is true.

(2) is obviously true since ς is an S-strategy, which do not initialize lower priority
strategies at all.

Since ς has only three outcomes, letO be the leftmost one that is visited infinitely
often. By the construction, we never terminate the definition of σs at ς itself (since
ς is an S-node). Hence at almost every ς-stage (even stage), we will be able to
continue the definition of σs beyond ς. Therefore, (3) is also true for ς.

Case 2: ς− = β is an SA
e -strategy for some e ∈ ω.

If O′ is f , then after stage s0, there are at most finitely many α-expansionary
stages. Let s ≥ s0 be the last α-expansionary stage. Then after stage s, whenever
β is visited, ς is also visited at this stage, and hence β_∞ cannot be visited again
and ς cannot be initialized by β_∞. If O′ is ∞, then by the choice of stage s0, ς
cannot be initialized after stage s0. Therefore, (1) is true in both cases.

(2) is true as ς is also an S-strategy.
(3) is true for ς for the same reason as in Case 1.

Case 3: ς− = β is an SB
e -strategy for some e.

(1) is true by the same argument given in Case 2. To see (2), observe that
after stage s0, if ς does not produce any disagreement, then it does not initialize
strategies with lower priority at all. Otherwise, if ς produces a disagreement at a
stage s ≥ s0, then after stage s0, ς can initialize at most finitely often to preserve
this disagreement, and it will not initialize after some sufficiently large stage.

If (3) holds, then ς is an Ni,j-strategy. By the construction, after stage s0, any
disagreement produced is preserved forever. Producing disagreement can happen
at most one time, so the construction σs stops at ς by producing disagreement at
most once. After a disagreement is produced, only preserving the disagreement can
stop the construction σs at ς. However, there are at most finitely times that the
existing disagreement must be preserved, so we will terminate the construction σs

at ς only finitely often. Therefore, (3) is also true. ¤

From Lemma 2.4, we can see that any N -strategy on TP is satisfied, and hence

Lemma 2.5. For all i, j ∈ ω, the requirement Ni,j is satisfied.

Proof. Fix i and j, and let σ be the Ni,j-strategy on TP . Also suppose that
[i]A = [j]B is total. We prove that [i]A is computable. Let s0 be the last stage at
which σ is initialized.

First, note that after stage s0, σ does not produce any disagreement at all, as
otherwise, as described in Lemma 2.4, the disagreement will be preserved forever,
and hence [i]A 6= [j]B .
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Fix n. We compute [i]A(n) by looking at the first σ-expansionary stage s > s0

with l(σ, s) > n. We claim that [i]A(n) = [i]As(n) and that [j]B(n) = [j]Bs(n).
Suppose not, and assume that [i]As(n) 6= [i]As′ (n) for some least s′ > s (without
loss of generality, we assume that the A-side changes first). Then at stage s′, we will
see such a possible disagreement, and σ will produce and preserve this disagreement
forever. This will contradict our assumption. ¤

The next lemma shows that all S-strategies are satisfied.

Lemma 2.6. For any e ∈ ω, SA
e and SB

e are satisfied.

Proof. Fix e. We prove that SA
e and SB

e are satisfied in exactly the same way.
First, we show that TOT(e) = limx→∞ ΓA(e, x).

Let β be the SA
e -strategy on TP , and let s0 be the last stage at which β is

initialized. By our construction, the ΓA(e, x) which are defined by β after stage s0

are never undefined by another strategy. In fact, β defines ΓA(e, x) for almost all x.
That is, after stage s0, whenever β is visited, those ΓA(e, x) defined by strategies
on the right of β are undefined, as these γ-uses have been enumerated into A. This
ensures that ΓA is total. If there are only finitely many β-expansionary stages,
then after a sufficiently large stage, β defines ΓA(e, x) only as 0, which ensures that
limx ΓA(e, x) = 0 and hence is equal to TOT(e). If there are infinitely many β-
expansionary stages, then after stage s0, at each β-expansionary stage, β succeeds
in enumerating all those γ(e,−)-uses defined under the outcome f into A and
redefines ΓA(e, x) to be 1, which ensures that limx ΓA(e, x) = 1 and hence is equal
to TOT(e).

Now we show that |{x : ΓA(e, x) 6= ΓA(e, x + 1)}| ≤ 23e+1
. Note that in the

construction, ΓA(e, x) may not be equal to ΓA(e, x + 1) for some x, since a ς-
strategy defining ΓA(e, x) is initialized when an Ni,j-strategy with higher priority
produces a disagreement or ΓA(e, x) is defined by an SA

e -strategy on the left of β.
There are at most 3e many such N -strategies, and once a disagreement is produced
by such an N -strategy, it is preserved unless it is initialized later. By a simple
counting argument, we know that there are at most 23e

such initializations, and
hence there are no more than 23e+1

many x such that ΓA(e, x) 6= ΓA(e, x + 1). ¤

By Lemma 2.6, we have

Lemma 2.7. TOT ≤tt A′, B′ and hence A and B are superhigh.

This completes the proof of Theorem 1.1.
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